REFERENCES
1. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1997;144:1188-94.
2. Q; Advanced Batteries and Materials Engineering Research Center, Guizhou Light Industry Technical College, Guiyang 550025, China. Combined first-principles and experimental studies of a V- doped LiFePO4/C composite as a cathode material for lithium-ion batteries. Int J Electrochem Sci 2021; doi: 10.20964/2021.05.01.
3. Zhang X, Ge X, Shen Z, et al. Green water-based binders for LiFePO 4 /C cathodes in Li-ion batteries: a comparative study. New J Chem 2021;45:9846-55.
4. Wang Y, Zhang J, Xue J, Ke X, Liang G. LiFePO4/C composites with high compaction density as cathode materials for lithium-ion batteries with high volumetric energy density. Ionics 2021;27:4687-94.
5. Song Y, Xie B, Song S, et al. Regeneration of LiFePO 4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis. Green Chem 2021;23:3963-71.
6. Huang X, He X, Jiang C, Tian G, Liu Y. Reaction mechanisms on solvothermal synthesis of nano LiFePO4 crystals and defect analysis. Ind Eng Chem Res 2017;56:10648-57.
7. Garay-marín JD, Quiroga-gonzález E, Garza-tovar LL, et al. High-performing li-ion battery with “two cathodes in one” of sulfur and LiFePO4 by strategies of mitigation of polysulfide shuttling. Batteries & Supercaps 2021;4:359-67.
8. Cui Z, Guo X, Ren J, et al. Enhanced electrochemical performance and storage mechanism of LiFePO4 doped by Co, Mn and S elements for lithium-ion batteries. Electrochimica Acta 2021;388:138592.
9. Cheng Q, Zhao X, Yang G, et al. Recent advances of metal phosphates-based electrodes for high-performance metal ion batteries. Energy Stor Mater 2021;41:842-82.
10. Zhong Z, Chen L, Zhu C, Ren W, Kong L, Wan Y. Nano LiFePO4 coated Ni rich composite as cathode for lithium ion batteries with high thermal ability and excellent cycling performance. J Power Sources 2020;464:228235.
11. Nie Z, Liu Y, Yang L, Li S, Pan F. Construction and application of materials knowledge graph based on author disambiguation: revisiting the evolution of LiFePO4. Adv Energy Mater 2021;11:2003580.
12. Sifuba S, Willenberg S, Feleni U, Ross N, Iwuoha E, Khabashesku V. Electrochemical analysis of architecturally enhanced LiFe0.5Mn0.5PO4 multiwalled carbon nanotube composite. J Nanotechnol 2021;2021:1-8.
13. Sifuba S, Willenberg S, Feleni U, Ross N, Iwuoha E. Electrochemical analysis of architecturally enhanced LiFe0.5Mn0.5PO4 multi-walled carbon nanotube composite. JNanoR 2021;66:1-11.
14. Adepoju AA, Williams QL. High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries. Curr Appl Phys 2020;20:1-4.
15. Bazzi K, Dhindsa KS, Dixit A, et al. Nanostructured high specific capacity C-LiFePO4 cathode material for lithium-ion batteries. J Mater Res 2012;27:424-30.
16. Tian X, Chen W, Jiang Z, Jiang Z. Porous carbon-coated LiFePO4 nanocrystals prepared by in situ plasma-assisted pyrolysis as superior cathode materials for lithium ion batteries. Ionics 2020;26:2715-26.
17. Wang C, Yuan X, Tan H, et al. Three-dimensional carbon-coated LiFePO4 cathode with improved li-ion battery performance. Coatings 2021;11:1137.
18. Yang G, Jiang CY, He XM, Ying JR, Gao J. Preparation of Li3V2 (PO4)3/LiFePO4 composite cathode material for lithium ion batteries. Ionics 2013;19:1247-53.
19. Ren J, Pu W, He X, Jiang C, Wan C. A carbon-LiFePO4 nanocomposite as high-performance cathode material for lithium-ion batteries. Ionics 2011;17:581-6.
20. Gao J, Li JJ, He XM, Jiang CY, Wan CR. Synthesis and electrochemical characteristics of LiFePO4/C cathode materials from different precursors. Int J Electrochem Sci 2011;6(7):2818-2825. Available from:
21. Gao Y, Xiong K, Zhang H, Zhu B. Effect of Ru doping on the properties of LiFePO4/C cathode materials for lithium-ion batteries. ACS Omega 2021;6:14122-9.
22. Liu Z, Huang X, Wang D. First-principle investigations of N doping in LiFePO4. Solid State Commun 2008;147:505-9.
23. Yolun A, Altin E, Altundag S, Arshad M, Abbas SM, Altin S. Investigation of structural and electrochemical performance of Ru-substituted LiFePO4 cathode material: an improvement of the capacity and rate performance. J Mater Sci: Mater Electron 2022;33:6670-80.
24. Zhang L, Zeng D. Aluminium behaviour in preparation process of lithium iron phosphate and its effects on material electrochemical performance. J Mater Res Technol 2021;15:3575-84.
26. Li JG, Zhao PX, Duan WL, Wang L, Li JJ, He XM. Hydrothermal synthesis of well-dispersed LiMn0.7Fe0.3PO4/C nanocrystalline cathodes for lithium-ion batteries. Int J Electrochem Sci 2015;10(9):7371-7379. Available from:
27. Ye F, Wang L, He X, et al. Solvothermal synthesis of nano LiMn0.9Fe0.1PO4: reaction mechanism and electrochemical properties. J Power Sources 2014;253:143-9.
28. Yang G, Jiang C, He X, Ying J, Cai F. Preparation of V-LiFePO4 cathode material for Li-ion batteries. Ionics 2012;18:59-64.
29. Wang L, Zhang LW, Li JJ, Gao J, Jiang CY, He XM. First-principles study of doping in LiMnPO4. Int J Electrochem Sci 2012;7(4):3362-3370. Available from:
30. Ying J, Lei M, Jiang C, et al. Preparation and characterization of high-density spherical Li0.97Cr0.01FePO4/C cathode material for lithium ion batteries. J Power Sources 2006;158:543-9.
31. Trinh DV, Nguyen MTT, Dang HTM, et al. Hydrothermally synthesized nanostructured LiMnxFe1-xPO4 (x = 0-0.3) cathode materials with enhanced properties for lithium-ion batteries. Sci Rep 2021;11:12280.
32. Zhang D, Wang J, Dong K, Hao A. First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4. Comput Mater Sci 2018;155:410-5.
33. Wang D, Wu X, Wang Z, Chen L. Cracking causing cyclic instability of LiFePO4 cathode material. J Power Sources 2005;140:125-8.
34. Maxisch T, Ceder G. Elastic properties of olivine LixFePO4 from first principles. Phys Rev B 2006:73.
35. Kobayashi H, Shigemura H, Tabuchi M, et al. Electrochemical properties of hydrothermally obtained LiCo[sub 1−x]Fe[sub x]O[sub 2] as a positive electrode material for rechargeable lithium batteries. J Electrochem Soc 2000;147:960.
36. Needham S, Wang G, Liu H, Drozd V, Liu R. Synthesis and electrochemical performance of doped LiCoO2 materials. J Power Sources 2007;174:828-31.
37. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter 1996;54:11169-86.
38. Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond. J Comput Chem 2008;29:2044-78.
39. Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996;77:3865-8.
40. Barma M. Gaussian smearing of spin weight functions in models of phase transitions. J Phys A: Math Gen 1983;16:L745-50.
41. Yang L, Tian Y, Chen J, et al. A high-rate capability LiFePO4 /C cathode achieved by the modulation of the band structures. J Mater Chem A 2021;9:24686-94.
42. Avilov A, Lepeshov G, Pietsch U, Tsirelson V. Multipole analysis of the electron density and electrostatic potential in germanium by high-resolution electron diffraction. J Phys Chem Solids 2001;62:2135-42.
43. Shi S, Liu L, Ouyang C, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 2003:68.
44. Zhang B, Peng Z, Song L, Wu X, Fu X. Computational screening toward quantum capacitance of transition-metals and vacancy doped/co-doped graphene as electrode of supercapacitors. Electrochimica Acta 2021;385:138432.
45. Zhang B, Fu X, Song L, Wu X. Computational screening toward hydrogen evolution reaction by the introduction of point defects at the edges of group IVA monochalcogenides: a first-principles study. J Phys Chem Lett 2020;11:7664-71.
46. Xu CH, Wang L, He XM, Luo J, Shang YM, Wang JL. Formation mechanism and growth habit of olivine-LiFePO4 materials by hydrothermal synthesis. Int J Electrochem Sci 2016;11(2):1558-1567. Available from:
47. de Walle CG, Neugebauer J. First-principles calculations for defects and impurities: Applications to III-nitrides. Journal of Applied Physics 2004;95:3851-79.
48. Ko M, Chae S, Jeong S, Oh P, Cho J. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries. ACS Nano 2014;8:8591-9.
49. Chang B, Kim J, Cho Y, et al. Highly elastic binder for improved cyclability of nickel-rich layered cathode materials in lithium-ion batteries. Adv Energy Mater 2020;10:2001069.
50. Zhang W, Hu J, Guo Y, et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 2008;20:1160-5.
51. Chen Y, Wang L, Anwar T, et al. Application of galvanostatic intermittent titration technique to investigate phase transformation of LiFePO4 nanoparticles. Electrochimica Acta 2017;241:132-40.
52. Zhang B, Fu X, Song L, Wu X. Surface selectivity of Ni3S2 toward hydrogen evolution reaction: a first-principles study. Phys Chem Chem Phys 2020;22:25685-94.
53. Güler E, Güler M, Uğur Ş, Uğur G. DFT aspects of the elastic, mechanical, magnetic, thermodynamic and optical properties of Ce 3 XY perovskites. Philos Mag 2022;102:244-63.
54. Khanzadeh M, Alahyarizadeh G. A DFT study on pressure dependency of TiC and ZrC properties: interconnecting elastic constants, thermodynamic, and mechanical properties. Ceram Int 2021;47:9990-10005.
55. Chibani S, Chami N, Arbouche O, Amara K, Kafi A. Structural, elastic, electronic and transport properties of CoVX (X = Ge and Si) compounds: a DFT prediction. Computational Condensed Matter 2020;24:e00475.
56. Hashigami S, Kato Y, Yoshimi K, et al. Effect of lithium silicate addition on the microstructure and crack formation of LiNi0.8Co0.1Mn0.1O2 cathode particles. ACS Appl Mater Interfaces 2019;11:39910-20.
57. Trevisanello E, Ruess R, Conforto G, Richter FH, Janek J. Polycrystalline and single crystalline NCM cathode materials-quantifying particle cracking, active surface area, and lithium diffusion. Adv Energy Mater 2021;11:2003400.
58. Pang P, Tan X, Wang Z, et al. Crack-free single-crystal LiNi0.83Co0.10Mn0.07O2 as cycling/thermal stable cathode materials for high-voltage lithium-ion batteries. Electrochimica Acta 2021;365:137380.