REFERENCES
2. Negreiros FR, Halder A, Yin C, et al. Bimetallic Ag-Pt sub-nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew Chem Int Ed Engl 2018;57:1209-13.
3. Gong Y N, Jiao L, Qin Y, et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angewandte Chemie 2020;132:2727-31.
4. Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv Mater 2018;30:1705112.
5. Kratzl K, Kratky T, Günther S, et al. Generation and stabilization of small platinum clusters Pt12±. x ;141:13962-9.
6. Imaoka T, Kitazawa H, Chun WJ, Yamamoto K. Finding the most catalytically active platinum clusters with low atomicity. Angew Chem Int Ed Engl 2015;54:9810-5.
7. Bai S, Bu L, Shao Q, et al. Multicomponent Pt-based zigzag nanowires as selectivity controllers for selective hydrogenation reactions. J Am Chem Soc 2018;140:8384-87.
8. Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016;354:1410-4.
9. Li Q, Wen X, Wu G, Chung HT, Gao R, Zelenay P. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells. Angew Chem Int Ed Engl 2015;54:7524-8.
10. .Li M, Duanmu K, Wan C, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis 2019;2:495-503.
11. Liang J, Li N, Zhao Z, et al. Tungsten-Doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew Chem Int Ed Engl 2019;58:15471-7.
12. Sun M, Ji J, Hu M, et al. Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution. ACS Catalysis 2019;9:8213-23.
13. Zhang B, Sun G, Ding S, et al. Atomically dispersed Pt1-polyoxometalate catalysts: how does metal-support interaction affect stability and hydrogenation activity? J Am Chem Soc 2019;141:8185-97.
14. Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal 2018;1:985-92.
15. Bai L, Wang X, Chen Q, et al. Explaining the size dependence in platinum-nanoparticle-catalyzed hydrogenation reactions. Angew Chem Int Ed Engl 2016;55:15656-61.
16. Liu P, Zhao Y, Qin R, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016;352:797-801.
17. Lang R, Li T, Matsumura D, et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3 )3. Angew Chem Int Ed Engl 2016;55:16054-8.
18. Zhao Y, Jiang WJ, Zhang J, et al. Anchoring sites engineering in single-atom catalysts for highly efficient electrochemical energy conversion reactions. Adv Mater 2021;33:e2102801.
19. Ji S, Chen Y, Fu Q, et al. Confined pyrolysis within metal-organic frameworks to form uniform Ru3 clusters for efficient oxidation of alcohols. J Am Chem Soc 2017;139:9795-8.
20. Liu H, Chang L, Bai C, Chen L, Luque R, Li Y. Controllable encapsulation of “Clean” metal clusters within MOFs through kinetic modulation: towards advanced heterogeneous nanocatalysts. Angew Chem 2016;128:5103-7.
21. Feng Y-Y, Ma J-H, Zhang G-R, et al. Dealloyed carbon-supported PtAg nanostructures: enhanced electrocatalytic activity for oxygen reduction reaction. Electrochemistry communications 2010;12:1191-94.
22. Zhang J, Zhao Y, Chen C, et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J Am Chem Soc 2019;141:20118-26.
23. Zhao Y, Zhang J, Xie Y, et al. Constructing atomic heterometallic sites in ultrathin nickel-incorporated cobalt phosphide nanosheets via a boron-assisted strategy for Highly efficient water splitting. Nano Lett 2021;21:823-32.
24. Yu S, Lou Q, Han K, et al. Synthesis and electrocatalytic performance of MWCNT-supported Ag@ Pt core-shell nanoparticles for ORR. International journal of hydrogen energy 2012;37:13365-70.
25. Zheng F, Luk S, Kwong T, Yung K. Synthesis of hollow PtAg alloy nanospheres with excellent electrocatalytic performances towards methanol and formic acid oxidations. RSC Adv 2016;6:44902-7.
26. Liu L, Ci S, Bi L, Jia J, Wen Z. Three-dimensional nanoarchitectures of Co nanoparticles inlayed on N-doped macroporous carbon as bifunctional electrocatalysts for glucose fuel cells. J Mater Chem A 2017;5:14763-74.
27. Liu Y, Kong J, Yuan J, et al. Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chemical Engineering Journal 2018;331:242-54.
28. Zhu Q, Wang W, Lin L, et al. Facile synthesis of the novel Ag 3 VO 4 /AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability. J Phys Chem C 2013;117:5894-900.
29. Zhao Z, Liu H, Gao W, et al. Surface-engineered PtNi-O nanostructure with record-high performance for electrocatalytic hydrogen evolution reaction. J Am Chem Soc 2018;140:9046-50.
30. Wang J, Xu F, Jin H, Chen Y, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv Mater 2017:29.
31. Fletcher S. Tafel slopes from first principles. Journal of Solid State Electrochemistry 2009;13:537-49. DOI: 10.1007/s10008.
32. Xu S, Kim Y, Park J, et al. Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nat Catal 2018;1:624-30.