REFERENCES

1. Cano ZP, Banham D, Ye S, et al. Batteries and fuel cells for emerging electric vehicle markets. Nat Energy 2018;3:279-89.

2. Goodenough JB. How we made the Li-ion rechargeable battery. Nat Electron 2018;1:204-204.

3. Armand M, Tarascon JM. Building better batteries. Nature 2008;451:652-7.

4. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature 2001;414:359-67.

5. Shen Y, Zhang Y, Han S, Wang J, Peng Z, Chen L. Unlocking the energy capabilities of lithium metal electrode with solid-state electrolytes. Joule 2018;2:1674-89.

6. Zhang H, Eshetu GG, Judez X, Li C, Rodriguez-Martínez LM, Armand M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew Chem Int Ed Engl 2018;57:15002-27.

7. Choi JW, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater 2016:1.

8. Nazar LF, Cuisinier M, Pang Q. Lithium-sulfur batteries. MRS Bull 2014;39:436-42.

9. Yin YX, Xin S, Guo YG, Wan LJ. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed Engl 2013;52:13186-200.

10. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li-O2 and Li-S batteries with high energy storage. Nat Mater 2011;11:19-29.

11. Liu G, Sun Q, Li Q, Zhang J, Ming J. Electrolyte Issues in Lithium-Sulfur batteries: development, prospect, and challenges. Energy Fuels 2021;35:10405-27.

12. Judez X, Zhang H, Li C, et al. Review - solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J Electrochem Soc 2017;165:A6008-16.

13. Judez X, Martinez-ibañez M, Santiago A, Armand M, Zhang H, Li C. Quasi-solid-state electrolytes for lithium sulfur batteries: advances and perspectives. J Power Sources 2019;438:226985.

14. Li S, Zhang W, Zheng J, Lv M, Song H, Du L. Inhibition of polysulfide shuttles in Li-S batteries: modified separators and solid-state electrolytes. Adv Energy Mater 2021;11:2000779.

15. Yang X, Luo J, Sun X. Towards high-performance solid-state Li-S batteries: from fundamental understanding to engineering design. Chem Soc Rev 2020;49:2140-95.

16. Tang S, Guo W, Fu Y. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv Energy Mater 2021;11:2000802.

17. Aziz SB, Woo TJ, Kadir M, Ahmed HM. A conceptual review on polymer electrolytes and ion transport models. Journal of Science: Advanced Materials and Devices 2018;3:1-17.

18. Qian J, Jin B, Li Y, Zhan X, Hou Y, Zhang Q. Research progress on gel polymer electrolytes for lithium-sulfur batteries. Journal of Energy Chemistry 2021;56:420-37.

19. Jiang M, Zhang Z, Tang B, et al. Polymer electrolytes for Li-S batteries: polymeric fundamentals and performance optimization. Journal of Energy Chemistry 2021;58:300-17.

20. Qiao L, Judez X, Rojo T, Armand M, Zhang H. Review - polymer electrolytes for sodium batteries. J Electrochem Soc 2020;167:070534.

21. Long L, Wang S, Xiao M, Meng Y. Polymer electrolytes for lithium polymer batteries. J Mater Chem A 2016;4:10038-69.

22. Fang R, Xu H, Xu B, Li X, Li Y, Goodenough JB. Reaction mechanism optimization of solid-state Li-S batteries with a PEO-based electrolyte. Adv Funct Mater 2021;31:2001812.

23. Liu Y, Liu H, Lin Y, et al. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery. Adv Funct Mater 2021;31:2104863.

24. Zhang Z, Zhao B, Zhang S, et al. A mixed electron/ion conducting interlayer enabling ultra-stable cycle performance for solid state lithium sulfur batteries. J Power Sources 2021;487:229428.

25. Zhong L, Wang S, Xiao M, et al. Addressing interface elimination: boosting comprehensive performance of all-solid-state Li-S battery. Energy Storage Materials 2021;41:563-70.

26. Xue Z, He D, Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem A 2015;3:19218-53.

27. Hong S, Wang Y, Kim N, Lee SB. Polymer-based electrolytes for all-solid-state lithium-sulfur batteries: from fundamental research to performance improvement. J Mater Sci 2021;56:8358-82.

28. Eshetu GG, Judez X, Li C, et al. Ultrahigh performance all solid-state lithium sulfur batteries: salt Anion's chemistry-induced anomalous synergistic effect. J Am Chem Soc 2018;140:9921-33.

29. Armand M, Gorecki W, Andreani R. .

30. Qiao L, Oteo U, Zhang Y, et al. Trifluoromethyl-free anion for highly stable lithium metal polymer batteries. Energy Storage Materials 2020;32:225-33.

31. Marmorstein D, Yu T, Striebel K, Mclarnon F, Hou J, Cairns E. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 2000;89:219-26.

32. Park C, Ryu H, Kim K, et al. Effect of sulfur electrode composition on the electrochemical property of lithium/PEO/sulfur battery. Met Mater Int 2004;10:375-9.

33. Shin J, Kim K, Ahn H, Ahn J. Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3-TinO2n-1 composite polymer electrolytes for lithium/sulfur battery. Mater Sci Eng B 2002;95:148-56.

34. Ma Q, Qi X, Tong B, et al. Novel Li[(CF3SO2)(n-C4F9SO2)N]-based polymer electrolytes for solid-state lithium batteries with superior electrochemical performance. ACS Appl Mater Interfaces 2016;8:29705-12.

35. Judez X, Zhang H, Li C, et al. Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) polymer electrolyte for all solid-state Li-S Cell. J Phys Chem Lett 2017;8:1956-60.

36. Younesi R, Veith GM, Johansson P, Edström K, Vegge T. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S. Energy Environ Sci 2015;8:1905-22.

37. Xu K. Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 2014;114:11503-618.

38. Santiago A, Castillo J, Garbayo I, et al. Salt additives for improving cyclability of polymer-based all-solid-state lithium-sulfur batteries. ACS Appl Energy Mater 2021;4:4459-64.

39. Zhang H, Oteo U, Judez X, et al. Designer anion enabling solid-state lithium-sulfur batteries. Joule 2019;3:1689-702.

40. Zhang H, Judez X, Santiago A, et al. Fluorine-free noble salt anion for high-performance all-solid-state lithium-sulfur batteries. Adv Energy Mater 2019;9:1900763.

41. Xu W, Wang J, Ding F, et al. Lithium metal anodes for rechargeable batteries. Energy Environ Sci 2014;7:513-37.

42. Zhang S, Ueno K, Dokko K, Watanabe M. Recent advances in electrolytes for lithium-sulfur batteries. Adv Energy Mater 2015;5:1500117.

43. Eshetu GG, Judez X, Li C, et al. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew Chem Int Ed Engl 2017;56:15368-72.

44. Gao X, Zheng X, Wang J, et al. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries. Nano Lett 2020;20:5496-503.

45. Gracia I, Ben Youcef H, Judez X, et al. S-containing copolymer as cathode material in poly(ethylene oxide)-based all-solid-state Li-S batteries. J Power Sources 2018;390:148-52.

46. Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. Acc Chem Res 2013;46:1125-34.

47. Evers S, Nazar LF. New approaches for high energy density lithium-sulfur battery cathodes. Acc Chem Res 2013;46:1135-43.

48. Pan H, Cheng Z, He P, Zhou H. A review of solid-state lithium-sulfur battery: ion transport and polysulfide chemistry. Energy Fuels 2020;34:11942-61.

49. Suzuki K, Kato D, Hara K, et al. Composite sulfur electrode prepared by high-temperature mechanical milling for use in an all-solid-state lithium-sulfur battery with a Li3.25Ge0.25P0.75S4 electrolyte. Electrochimica Acta 2017;258:110-5.

50. Nagao M, Hayashi A, Tatsumisago M. Sulfur-carbon composite electrode for all-solid-state Li/S battery with Li2S-P2S5 solid electrolyte. Electrochimica Acta 2011;56:6055-9.

51. Nagata H, Chikusa Y. A lithium sulfur battery with high power density. J Power Sources 2014;264:206-10.

52. Zhang C, Lin Y, Zhu Y, Zhang Z, Liu J. Improved lithium-ion and electrically conductive sulfur cathode for all-solid-state lithium-sulfur batteries. RSC Adv 2017;7:19231-6.

53. Tamate R, Saruwatari A, Nakanishi A, et al. Excellent dispersibility of single-walled carbon nanotubes in highly concentrated electrolytes and application to gel electrode for Li-S batteries. Electrochem commun 2019;109:106598.

54. Ruan J, Sun H, Song Y, et al. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater 2021;1:100018.

55. Zhou C, Bag S, He T, Lv B, Thangadurai V. A 20 °C operating high capacity solid-state Li-S battery with an engineered carbon support cathode structure. Applied Materials Today 2020;19:100585.

56. Liu R, Wu Z, He P, et al. A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. Journal of Materiomics 2019;5:185-94.

57. D'angelo AJ, Panzer MJ. Decoupling the ionic conductivity and elastic modulus of Gel electrolytes: fully zwitterionic copolymer scaffolds in lithium salt/ionic liquid solutions. Adv Energy Mater 2018;8:1801646.

58. Tian X, Yi Y, Yang P, et al. High-charge density polymerized ionic networks boosting high ionic conductivity as quasi-solid electrolytes for high-voltage batteries. ACS Appl Mater Interfaces 2019;11:4001-10.

59. Guo X, Li S, Chen F, et al. Performance Improvement of PVDF-HFP-based gel polymer electrolyte with the dopant of octavinyl-polyhedral oligomeric silsesquioxane. Materials (Basel) 2021;14:2701.

60. Liu M, Zhou D, He Y, et al. Novel gel polymer electrolyte for high-performance lithium-sulfur batteries. Nano Energy 2016;22:278-89.

61. Wang Q, Wen Z, Jin J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem Commun (Camb) 2016;52:1637-40.

62. Baloch M, Vizintin A, Chellappan RK, et al. Application of gel polymer electrolytes based on ionic liquids in lithium-sulfur batteries. J Electrochem Soc 2016;163:A2390-8.

63. Agostini M, Lim DH, Sadd M, et al. Stabilizing the performance of high-capacity sulfur composite electrodes by a New Gel polymer electrolyte configuration. ChemSusChem 2017;10:3490-6.

64. Gao S, Wang K, Wang R, et al. Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries. J Mater Chem A 2017;5:17889-95.

65. Safa M, Hao Y, Chamaani A, et al. Capacity fading mechanism in lithium-sulfur battery using poly(ionic liquid) gel electrolyte. Electrochimica Acta 2017;258:1284-92.

66. Han D, Liu S, Liu Y, Zhang Z, Li G, Gao X. Lithiophilic gel polymer electrolyte to stabilize the lithium anode for a quasi-solid-state lithium-sulfur battery. J Mater Chem A 2018;6:18627-34.

67. Du H, Li S, Qu H, et al. Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups. Journal of Membrane Science 2018;550:399-406.

68. M. Shanthi P, J. Hanumantha P, Albuquerque T, Gattu B, Kumta PN. Novel composite polymer electrolytes of PVdF-HFP derived by electrospinning with enhanced Li-ion conductivities for rechargeable lithium-sulfur batteries. ACS Appl Energy Mater 2018;1:483-94.

69. Huang H, Ding F, Zhong H, et al. Nano-SiO2-embedded poly(propylene carbonate)-based composite gel polymer electrolyte for lithium-sulfur batteries. J Mater Chem A 2018;6:9539-49.

70. Wang X, Hao X, Xia Y, Liang Y, Xia X, Tu J. A polyacrylonitrile (PAN)-based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries. Journal of Membrane Science 2019;582:37-47.

71. Xia Y, Liang Y, Xie D, et al. A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chem Eng J 2019;358:1047-53.

72. Deng N, Liu Y, Wang L, et al. Designing of a Phosphorus, Nitrogen, and Sulfur Three-Flame Retardant Applied in a Gel Poly-m-phenyleneisophthalamide nanofiber membrane for advanced safety lithium-sulfur batteries. ACS Appl Mater Interfaces 2019;11:36705-16.

73. Shen Y, Zeng F, Zhou X, et al. A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium-sulfur batteries. Journal of Energy Chemistry 2020;48:267-76.

74. Ye B, Cai X, Wang D, Saha P, Wang G. A novel poly(vinyl carbonate-co-butyl acrylate) quasi-solid-state electrolyte as a strong catcher for lithium polysulfide in Li-S batteries. Electrochimica Acta 2020;332:135463.

75. Zhou D, Shanmukaraj D, Tkacheva A, Armand M, Wang G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 2019;5:2326-52.

76. Ma C, Cui W, Liu X, Ding Y, Wang Y. In situ preparation of gel polymer electrolyte for lithium batteries: progress and perspectives. InfoMat ; doi: 10.1002/inf2.12232.

77. Cheng H, Zhu J, Jin H, et al. In situ initiator-free gelation of highly concentrated lithium bis(fluorosulfonyl)imide-1,3-dioxolane solid polymer electrolyte for high performance lithium-metal batteries. Materials Today Energy 2021;20:100623.

78. Kim SH, Choi KH, Cho SJ, Choi S, Park S, Lee SY. Printable solid-state lithium-ion batteries: a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics. Nano Lett 2015;15:5168-77.

79. Wang X, Hao X, Cai D, Zhang S, Xia X, Tu J. An ultraviolet polymerized 3D gel polymer electrolyte based on multi-walled carbon nanotubes doped double polymer matrices for lithium-sulfur batteries. Chem Eng J 2020;382:122714.

80. Hao X, Wenren H, Wang X, Xia X, Tu J. A gel polymer electrolyte based on PVDF-HFP modified double polymer matrices via ultraviolet polymerization for lithium-sulfur batteries. J Colloid Interface Sci 2020;558:145-54.

81. Zhao X, Wang C, Li Z, Hu X, Abdul Razzaq A, Deng Z. Sulfurized polyacrylonitrile for high-performance lithium sulfur batteries: advances and prospects. J Mater Chem A 2021;9:19282-97.

82. Zhang S. Understanding of sulfurized polyacrylonitrile for superior performance lithium/sulfur battery. Energies 2014;7:4588-600.

83. Liu Y, Yang D, Yan W, et al. Synergy of sulfur/polyacrylonitrile composite and gel polymer electrolyte promises heat-resistant lithium-sulfur batteries. iScience 2019;19:316-25.

84. Wu ZJ, Wu BR, Ren YH, Mu DB, Zhao X. Superior cycling performance of sulfurized polyacrylonitrile cathode assembled with in situ polymerized gel polymer electrolyte. AMR 2014;1070-1072:553-8.

85. Zhang X, Chen K, Sun Z, et al. Structure-related electrochemical performance of organosulfur compounds for lithium-sulfur batteries. Energy Environ Sci 2020;13:1076-95.

86. Yan W, Yan K, Kuang G, Jin Z. Fluorinated quinone derived organosulfur copolymer cathodes for long-cycling, thermostable and flexible lithium-sulfur batteries. Chem Eng J 2021;424:130316.

87. Cheng X, Yan C, Huang J, et al. The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection. Energy Storage Materials 2017;6:18-25.

88. Shi L, Bak S, Shadike Z, et al. Reaction heterogeneity in practical high-energy lithium-sulfur pouch cells. Energy Environ Sci 2020;13:3620-32.

89. Kong L, Jin Q, Huang J, et al. Nonuniform redistribution of sulfur and lithium upon cycling: probing the origin of capacity fading in lithium-sulfur pouch cells. Energy Technol 2019;7:1900111.

90. Chen PY, Yan C, Chen P, et al. Selective permeable lithium-ion channels on lithium metal for practical lithium-sulfur pouch cells. Angew Chem Int Ed Engl 2021;60:18031-6.

91. Dörfler S, Althues H, Härtel P, Abendroth T, Schumm B, Kaskel S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 2020;4:539-54.

92. Zhao M, Li BQ, Zhang XQ, Huang JQ, Zhang Q. A perspective toward practical lithium-sulfur batteries. ACS Cent Sci 2020;6:1095-104.

93. Liu W, Guo R, Zhan B, et al. Artificial solid electrolyte interphase layer for lithium metal anode in high-energy lithium secondary pouch cells. ACS Appl Energy Mater 2018;1:1674-9.

94. Wang W, Yue X, Meng J, et al. Lithium phosphorus oxynitride as an efficient protective layer on lithium metal anodes for advanced lithium-sulfur batteries. Energy Storage Materials 2019;18:414-22.

95. Yang Q, Deng N, Chen J, Cheng B, Kang W. The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem Eng J 2021;413:127427.

96. Angulakshmi N, Dhanalakshmi RB, Sathya S, Ahn J, Stephan AM. Understanding the electrolytes of lithium-sulfur batteries. Batteries & Supercaps 2021;4:1064-95.

97. Qian J, Henderson WA, Xu W, et al. High rate and stable cycling of lithium metal anode. Nat Commun 2015;6:6362.

98. Shin ES, Kim K, Oh SH, Cho WI. Polysulfide dissolution control: the common ion effect. Chem Commun (Camb) 2013;49:2004-6.

99. Suo L, Hu YS, Li H, Armand M, Chen L. A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 2013;4:1481.

100. Cuisinier M, Cabelguen P, Adams BD, Garsuch A, Balasubramanian M, Nazar LF. Unique behaviour of nonsolvents for polysulphides in lithium-sulphur batteries. Energy Environ Sci 2014;7:2697-705.

101. Lee CW, Pang Q, Ha S, et al. Directing the lithium-sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent Sci 2017;3:605-13.

102. Shyamsunder A, Beichel W, Klose P, et al. Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew Chem Int Ed Engl 2017;56:6192-7.

103. Nakanishi A, Ueno K, Watanabe D, et al. Sulfolane-based highly concentrated electrolytes of lithium bis(trifluoromethanesulfonyl)amide: ionic transport, Li-ion coordination, and Li-S battery performance. J Phys Chem C 2019;123:14229-38.

104. Liu J, Li S, Marium M, et al. Towards practical cells: combined use of titanium black as a cathode additive and sparingly solvating electrolyte for high-energy-density lithium-sulfur batteries. Sustainable Energy Fuels 2021;5:1821-31.

105. Weller C, Pampel J, Dörfler S, Althues H, Kaskel S. Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium-sulfur batteries. Energy Technol 2019;7:1900625.

106. Kensy C, Schwotzer F, Dörfler S, Althues H, Kaskel S. Impact of carbon porosity on sulfur conversion in Li-S battery cathodes in a sparingly polysulfide solvating electrolyte. Batteries & Supercaps 2021;4:823-33.

107. Piwko M, Weller C, Hippauf F, Dörfler S, Althues H, Kaskel S. Symmetric lithium sulfide - sulfur cells: a method to study degradation mechanisms of cathode, separator and electrolyte concepts for lithium-sulfur batteries. J Electrochem Soc 2018;165:A1084-91.

108. Liang J, Sun Q, Zhao Y, et al. Stabilization of all-solid-state Li-S batteries with a polymer-ceramic sandwich electrolyte by atomic layer deposition. J Mater Chem A 2018;6:23712-9.

109. Liu J, Qian T, Wang M, Zhou J, Xu N, Yan C. Use of tween polymer to enhance the compatibility of the Li/electrolyte interface for the high-performance and high-safety quasi-solid-state lithium-sulfur battery. Nano Lett 2018;18:4598-605.

110. Wan Z, Huang Y, Zeng X, et al. Peach gum as an efficient binder for high-areal-capacity lithium-sulfur batteries. Sustainable Materials and Technologies 2021;30:e00334.

111. Huang Y, Shaibani M, Gamot TD, et al. A saccharide-based binder for efficient polysulfide regulations in Li-S batteries. Nat Commun 2021;12:5375.

112. Yuan Z, Peng HJ, Hou TZ, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett 2016;16:519-27.

113. He J, Bhargav A, Manthiram A. High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts. ACS Nano 2021;15:8583-91.

114. Du Z, Chen X, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J Am Chem Soc 2019;141:3977-85.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/