REFERENCES

1. Martins F, Felgueiras C, Smitkova M, Caetano N. Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies 2019;12:964.

2. Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 2014;43:7520-35.

3. Wen M, Mori K, Kuwahara Y, An T, Yamashita H. Design and architecture of metal organic frameworks for visible light enhanced hydrogen production. Appl Catal B-Environ 2017;218:555-69.

4. Cheng H, Wen M, Ma X, et al. Hydrogen doped metal oxide semiconductors with exceptional and tunable localized surface plasmon resonances. J Am Chem Soc 2016;138:9316-24.

5. Bhatkhande DS, Pangarkar VG, Beenackers AA. Photocatalytic degradation for environmental applications - a review. J Chem Technol Biotechnol 2002;77:102-16.

6. Fuku K, Hayashi R, Takakura S, Kamegawa T, Mori K, Yamashita H. The synthesis of size- and color-controlled silver nanoparticles by using microwave heating and their enhanced catalytic activity by localized surface plasmon resonance. Angew Chem Int Ed Engl 2013;52:7446-50.

7. Cheng H, Qian X, Kuwahara Y, Mori K, Yamashita H. A plasmonic molybdenum oxide hybrid with reversible tunability for visible-light-enhanced catalytic reactions. Adv Mater 2015;27:4616-21.

8. Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO(2) and polytetrafluoroethylene. Adv Mater 2012;24:3697-700.

9. Hou H, Zeng X, Zhang X. Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed Engl 2020;59:17356-76.

10. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA. Heterojunction photocatalysts. Adv Mater 2017;29:1601694.

11. Wang F, Li Q, Xu D. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv Energy Mater 2017;7:1700529.

12. Zhao W, Chen Z, Yang X, et al. Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals. Renew Sustain Energy Rev 2020;132:110040.

13. Wang Z, Li C, Domen K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem Soc Rev 2019;48:2109-25.

14. Ou M, Li J, Chen Y, et al. Formation of noble-metal-free 2D/2D ZnmIn2Sm+3 (m = 1, 2, 3)/MXene Schottky heterojunction as an efficient photocatalyst for hydrogen evolution. Chem Eng J 2021;424:130170.

15. Ou M, Li J, Geng M, Wang J, Wan S, Zhong Q. Construction of Z-scheme photocatalyst containing ZnIn2S4, Co3O4-photodeposited BiVO4 (110) facets and rGO electron mediator for overall water splitting into H2 and O2. Catal Lett 2021;151:2570-82.

16. Wang L, Zhang J, Zhang Y, Yu H, Qu Y, Yu J. Inorganic metal-oxide photocatalyst for H2O2 production. Small 2021; doi: 10.1002/smll.202104561.

17. Hejazi S, Mohajernia S, Osuagwu B, et al. On the controlled loading of single platinum atoms as a Co-catalyst on TiO2 anatase for optimized photocatalytic H2 generation. Adv Mater 2020;32:e1908505.

18. Cho Y, Park B, Padhi DK, et al. Disordered-layer-mediated reverse metal-oxide interactions for enhanced photocatalytic water splitting. Nano Lett 2021;21:5247-53.

19. Méndez-Medrano MG, Kowalska E, Ohtani B, et al. Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production. J Chem Phys 2020;153:034705.

20. Osuagwu B, Raza W, Tesler AB, Schmuki P. A drastic improvement in photocatalytic H2 production by TiO2 nanosheets grown directly on Ta2O5 substrates. Nanoscale 2021;13:12750-6.

21. Sun L, Zhuang Y, Yuan Y, et al. Nitrogen-Doped carbon-coated CuO-In2O3 p-n heterojunction for remarkable photocatalytic hydrogen evolution. Adv Energy Mater 2019;9:1902839.

22. Han L, Jing F, zhang J, et al. Environment friendly and remarkably efficient photocatalytic hydrogen evolution based on metal organic framework derived hexagonal/cubic In2O3 phase-junction. Appl Catal B-Environ 2021;282:119602.

23. Guo L, Yang Z, Marcus K, et al. MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution. Energy Environ Sci 2018;11:106-14.

24. Wang W, Zhu S, Cao Y, et al. Edge-enriched ultrathin MoS2 embedded yolk-shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv Funct Mater 2019;29:1901958.

25. Lai G, Lyu L, Huang Y, et al. Few-layer WS2-MoS2 in-plane heterostructures for efficient photocatalytic hydrogen evolution. Nano Energy 2021;81:105608.

26. Xiao S, Dai W, Liu X, et al. Microwave-induced metal dissolution synthesis of core-shell copper nanowires/ZnS for visible light photocatalytic H2 evolution. Adv Energy Mater 2019;9:1900775.

27. Wang S, Zhu B, Liu M, Zhang L, Yu J, Zhou M. Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Catal B-Environ 2019;243:19-26.

28. Dai B, Fang J, Yu Y, et al. Construction of infrared-light-responsive photoinduced carriers driver for enhanced photocatalytic hydrogen evolution. Adv Mater 2020;32:e1906361.

29. Zhang P, Luan D, Lou XWD. Fabrication of CdS frame-in-cage particles for efficient photocatalytic hydrogen generation under visible-light irradiation. Adv Mater 2020;32:e2004561.

30. Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem Rev 2016;116:7159-329.

31. Ismael M. A review on graphitic carbon nitride (g-C3N4) based nanocomposites: Synthesis, categories, and their application in photocatalysis. J Alloys Compd 2020;846:156446.

32. Gong Y, Li M, Wang Y. Carbon nitride in energy conversion and storage: recent advances and future prospects. ChemSusChem 2015;8:931-46.

33. Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2012;2:1596-606.

34. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ. Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 2012;5:6717.

35. Mo Z, Xu H, Chen Z, et al. Construction of MnO2/Monolayer g-C3N4 with Mn vacancies for Z-scheme overall water splitting. Appl Catal B-Environ 2019;241:452-60.

36. Wang Y, Xu W, Zhang Y, et al. Introducing spin polarization into atomically thin 2D carbon nitride sheets for greatly extended visible-light photocatalytic water splitting. Nano Energy 2021;83:105783.

37. Xu Y, Fan M, Yang W, et al. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production. Adv Mater 2021;33:e2101455.

38. Yamashita H, Mori K, Kuwahara Y, et al. Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels. Chem Soc Rev 2018;47:8072-96.

39. Chen X, Xiao S, Wang H, et al. MOFs Conferred with transient metal centers for enhanced photocatalytic activity. Angew Chem Int Ed Engl 2020;59:17182-6.

40. Chen X, Cai Y, Liang R, et al. NH2-UiO-66(Zr) with fast electron transfer routes for breaking down nitric oxide via photocatalysis. Appl Catal B-Environ 2020;267:118687.

41. Wen M, Li G, Liu H, Chen J, An T, Yamashita H. Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environ Sci : Nano 2019;6:1006-25.

42. Wen M, Mori K, Kuwahara Y, Yamashita H. Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: synergic boosting of H2 production from formic acid. ACS Energy Lett 2017;2:1-7.

43. Xiao JD, Han L, Luo J, Yu SH, Jiang HL. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew Chem Int Ed Engl 2018;57:1103-7.

44. Dong D, Yan C, Huang J, et al. An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H2 evolution. J Mater Chem A 2019;7:24180-5.

45. Sun K, Liu M, Pei J, et al. Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angew Chem Int Ed Engl 2020;59:22749-55.

46. Meng X, Sheng J, Tang H, Sun X, Dong H, Zhang F. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl Catal B-Environ 2019;244:340-6.

47. Lin C, Han C, Zhang H, et al. Porphyrin-based metal-organic frameworks for efficient photocatalytic H2 production under visible-light irradiation. Inorg Chem 2021;60:3988-95.

48. Lyle SJ, Waller PJ, Yaghi OM. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem 2019;1:172-84.

49. Geng K, He T, Liu R, et al. Covalent organic frameworks: design, synthesis, and functions. Chem Rev 2020;120:8814-933.

50. Segura JL, Mancheño MJ, Zamora F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 2016;45:5635-71.

51. Gao C, Li J, Yin S, et al. Isostructural three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2019;58:9770-5.

52. Jiang L, Tian Y, Sun T, et al. A Crystalline polyimide porous organic framework for selective adsorption of acetylene over ethylene. J Am Chem Soc 2018;140:15724-30.

53. Li LH, Feng XL, Cui XH, Ma YX, Ding SY, Wang W. Salen-based covalent organic framework. J Am Chem Soc 2017;139:6042-5.

54. Yan S, Guan X, Li H, et al. Three-dimensional Salphen-based covalent-organic frameworks as catalytic antioxidants. J Am Chem Soc 2019;141:2920-4.

55. Lin G, Ding H, Yuan D, Wang B, Wang C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J Am Chem Soc 2016;138:3302-5.

56. Wang P, Zhou F, Zhang C, et al. Ultrathin two-dimensional covalent organic framework nanoprobe for interference-resistant two-photon fluorescence bioimaging. Chem Sci 2018;9:8402-8.

57. Das G, Biswal BP, Kandambeth S, et al. Chemical sensing in two dimensional porous covalent organic nanosheets. Chem Sci 2015;6:3931-9.

58. Ding H, Li J, Xie G, et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat Commun 2018;9:5234.

59. Bessinger D, Ascherl L, Auras F, Bein T. Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks. J Am Chem Soc 2017;139:12035-42.

60. Wang S, Wang Q, Shao P, et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J Am Chem Soc 2017;139:4258-61.

61. Du Y, Yang H, Whiteley JM, et al. Ionic covalent organic frameworks with spiroborate linkage. Angew Chem Int Ed Engl 2016;55:1737-41.

62. Mulzer CR, Shen L, Bisbey RP, et al. Superior charge storage and power density of a conducting polymer-modified covalent organic framework. ACS Cent Sci 2016;2:667-73.

63. Xie J, Shevlin SA, Ruan Q, et al. Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ Sci 2018;11:1617-24.

64. Chen R, Wang Y, Ma Y, et al. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat Commun 2021;12:1354.

65. Zhou T, Wang L, Huang X, et al. PEG-stabilized coaxial stacking of two-dimensional covalent organic frameworks for enhanced photocatalytic hydrogen evolution. Nat Commun 2021;12:3934.

66. Yang J, Acharjya A, Ye MY, et al. Protonated imine-linked covalent organic frameworks for photocatalytic hydrogen evolution. Angew Chem Int Ed Engl 2021;60:19797-803.

67. Cheng Z, Qi W, Pang CH, et al. Recent advances in transition metal nitride-based materials for photocatalytic applications. Adv Funct Materials 2021;31:2100553.

68. Xiao J, Vequizo JJM, Hisatomi T, et al. Simultaneously tuning the defects and surface properties of Ta3N5 nanoparticles by Mg-Zr codoping for significantly accelerated photocatalytic H2 evolution. J Am Chem Soc 2021;143:10059-64.

69. Wang Z, Luo Y, Hisatomi T, et al. Sequential cocatalyst decoration on BaTaO2N towards highly-active Z-scheme water splitting. Nat Commun 2021;12:1005.

70. Wang Y, Zhao J, Chen Z, et al. Construction of Z-scheme MoSe2/CdSe hollow nanostructure with enhanced full spectrum photocatalytic activity. Appl Catal B-Environ 2019;244:76-86.

71. Zhang G, Wang X. Oxysulfide semiconductors for photocatalytic overall water splitting with visible light. Angew Chem Int Ed Engl 2019;58:15580-2.

72. Pan R, Hu M, Liu J, et al. Two-dimensional all-in-one sulfide monolayers driving photocatalytic overall water splitting. Nano Lett 2021;21:6228-36.

73. Chen X, Shi R, Chen Q, et al. Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting. Nano Energy 2019;59:644-50.

74. Lin Y, Su W, Wang X, Fu X, Wang X. LaOCl-coupled polymeric carbon nitride for overall water splitting through a one-photon excitation pathway. Angew Chem Int Ed Engl 2020;59:20919-23.

75. Chen X, Wang J, Chai Y, Zhang Z, Zhu Y. Efficient photocatalytic overall water splitting induced by the giant internal electric field of a g-C3N4/rGO/PDIP Z-scheme heterojunction. Adv Mater 2021;33:e2007479.

76. Wu C, Xue S, Qin Z, et al. Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Appl Catal B-Environ 2021;282:119557.

77. Zhao D, Wang Y, Dong C, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting. Nat Energy 2021;6:388-97.

78. Zhang J, Bai T, Huang H, et al. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv Mater 2020;32:e2004747.

79. Hu H, Wang Z, Cao L, et al. Metal-organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat Chem 2021;13:358-66.

80. Wang Y, Wu Y, Sun K, Mi Z. A quadruple-band metal-nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting. Mater Horiz 2019;6:1454-62.

81. Pan Z, Zhang G, Wang X. Polymeric carbon nitride/reduced graphene oxide/Fe2O3: all-solid-state Z-scheme system for photocatalytic overall water splitting. Angew Chem Int Ed Engl 2019;58:7102-6.

82. Oshima T, Nishioka S, Kikuchi Y, et al. An artificial Z-scheme constructed from dye-sensitized metal oxide nanosheets for visible light-driven overall water splitting. J Am Chem Soc 2020;142:8412-20.

83. Zhao Y, Ding C, Zhu J, et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew Chem Int Ed Engl 2020;59:9653-8.

84. Takata T, Jiang J, Sakata Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020;581:411-4.

85. Zhang Z, Liu Y, Fang Y, et al. Near-infrared-plasmonic energy upconversion in a nonmetallic heterostructure for efficient H2 evolution from ammonia borane. Adv Sci (Weinh) 2018;5:1800748.

86. Zhang MY, Li JK, Wang R, Zhao SN, Zang SQ, Mak TCW. Construction of core-shell MOF@COF hybrids with controllable morphology adjustment of COF shell as a novel platform for photocatalytic cascade reactions. Adv Sci (Weinh) 2021;8:e2101884.

87. Cao S, Chen Y, Wang H, et al. Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation. Joule 2018;2:549-57.

88. Zhang S, Li M, Zhao J, et al. Plasmonic AuPd-based Mott-Schottky photocatalyst for synergistically enhanced hydrogen evolution from formic acid and aldehyde. Appl Catal B-Environ 2019;252:24-32.

89. Wang C, Sun Z, Zheng Y, Hu YH. Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A 2019;7:865-87.

90. Hu Y. . Advances in CO2 conversion and utilization. Washington: American Chemical Society; 2010.

91. Mao J, Li K, Peng T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal Sci Technol 2013;3:2481.

92. Shi R, Waterhouse GI, Zhang T. Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol RRL 2017;1:1700126.

93. Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater 2017;29:1701784.

94. Leitner W. The coordination chemistry of carbon dioxide and its relevance for catalysis: a critical survey. Coord Chem Rev 1996;153:257-84.

95. Zhang L, Zhao ZJ, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed Engl 2017;56:11326-53.

96. Shen H, Peppel T, Strunk J, Sun Z. Photocatalytic reduction of CO2 by metal-free-based materials: recent advances and future perspective. Sol RRL 2020;4:1900546.

97. Sun Z, Talreja N, Tao H, et al. Catalysis of carbon dioxide photoreduction on nanosheets: fundamentals and challenges. Angew Chem Int Ed Engl 2018;57:7610-27.

98. Habisreutinger SN, Schmidt-Mende L, Stolarczyk JK. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl 2013;52:7372-408.

99. Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979;277:637-8.

100. Morris AJ, Meyer GJ, Fujita E. Molecular approaches to the photocatalytic reduction of carbon dioxide for solar fuels. Acc Chem Res 2009;42:1983-94.

101. Angamuthu R, Byers P, Lutz M, Spek AL, Bouwman E. Electrocatalytic CO2 conversion to oxalate by a copper complex. Science 2010;327:313-5.

102. Li J, Shao W, Geng M, Wan S, Ou M, Chen Y. Combined Schottky junction and doping effect in CdxZn1-xS@Au/BiVO4 Z-Scheme photocatalyst with boosted carriers charge separation for CO2 reduction by H2O. J Colloid Interface Sci 2022;606:1469-76.

103. Ou M, Tu W, Yin S, et al. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3 N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed Engl 2018;57:13570-4.

104. Zhang Q, Han W, Hong Y, Yu J. Photocatalytic reduction of CO2 with H2O on Pt-loaded TiO2 catalyst. Catalysis Today 2009;148:335-40.

105. Xie S, Wang Y, Zhang Q, Deng W, Wang Y. MgO- and Pt-promoted TiO2 as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal 2014;4:3644-53.

106. Sorcar S, Hwang Y, Lee J, et al. CO2, water, and sunlight to hydrocarbon fuels: a sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy Environ Sci 2019;12:2685-96.

107. Li N, Wang B, Si Y, et al. Toward high-value hydrocarbon generation by photocatalytic reduction of CO2 in water vapor. ACS Catal 2019;9:5590-602.

108. Yuan L, Hung S, Tang Z, Chen HM, Xiong Y, Xu Y. Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal 2019;9:4824-33.

109. Wang Q, Warnan J, Rodríguez-jiménez S, et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat Energy 2020;5:703-10.

110. Wang C, Zhao Y, Xu H, et al. Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O. Appl Catal B-Environ 2020;263:118314.

111. Wang S, Teramura K, Hisatomi T, et al. Dual Ag/Co cocatalyst synergism for the highly effective photocatalytic conversion of CO2 by H2O over Al-SrTiO3. Chem Sci 2021;12:4940-8.

112. Wang W, Deng C, Xie S, et al. Photocatalytic C-C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J Am Chem Soc 2021;143:2984-93.

113. Lu M, Liu J, Li Q, et al. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew Chem Int Ed Engl 2019;58:12392-7.

114. Fang ZB, Liu TT, Liu J, et al. Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks. J Am Chem Soc 2020;142:12515-23.

115. Dong LZ, Zhang L, Liu J, et al. Stable heterometallic cluster-based organic framework catalysts for artificial photosynthesis. Angew Chem Int Ed Engl 2020;59:2659-63.

116. Feng X, Pi Y, Song Y, et al. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J Am Chem Soc 2020;142:690-5.

117. Jiang Z, Xu X, Ma Y, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020;586:549-54.

118. Yu F, Jing X, Wang Y, Sun M, Duan C. Hierarchically porous metal-organic framework/MoS2 interface for selective photocatalytic conversion of CO2 with H2O into CH3COOH. Angew Chem Int Ed Engl 2021;60:24849-53.

119. Wu H, Kong XY, Wen X, et al. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew Chem Int Ed Engl 2021;60:8455-9.

120. Li L, Guo H, Yao G, et al. Visible/infrared light-driven high-efficiency CO2 conversion into ethane based on a B-Co synergistic catalyst. J Mater Chem A 2020;8:22327-34.

121. Li R, Cheng W, Richter MH, et al. Unassisted highly selective gas-phase CO2 reduction with a plasmonic Au/p-GaN photocatalyst using H2O as an electron donor. ACS Energy Lett 2021;6:1849-56.

122. Wang Y, Zhang Z, Zhang L, et al. Visible-light driven overall conversion of CO2 and H2O to CH4 and O2 on 3D-SiC@2D-MoS2 heterostructure. J Am Chem Soc 2018;140:14595-8.

123. Ren X, Gao M, Zhang Y, et al. Photocatalytic reduction of CO2 on BiOX: effect of halogen element type and surface oxygen vacancy mediated mechanism. Appl Catal B-Environ 2020;274:119063.

124. Wu CY, Lee CJ, Yu YH, et al. Efficacious CO2 photoconversion to C2 and C3 hydrocarbons on upright SnS-SnS2 heterojunction nanosheet frameworks. ACS Appl Mater Interfaces 2021;13:4984-92.

125. Thampi KR, Kiwi J, Grätzel M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 1987;327:506-8.

126. Ahmed N, Shibata Y, Taniguchi T, Izumi Y. Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M(III) (M=aluminum, gallium) layered double hydroxides. J Catal 2011;279:123-35.

127. Jelle AA, Ghuman KK, O’brien PG, et al. Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support. Adv Energy Mater 2018;8:1702277.

128. Wang L, Ghoussoub M, Wang H, et al. Photocatalytic hydrogenation of carbon dioxide with high selectivity to methanol at atmospheric pressure. Joule 2018;2:1369-81.

129. Yan T, Wang L, Liang Y, et al. Polymorph selection towards photocatalytic gaseous CO2 hydrogenation. Nat Commun 2019;10:2521.

130. Yan T, Li N, Wang L, et al. Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO2 photocatalytic hydrogenation. Nat Commun 2020;11:6095.

131. Huang H, Mao M, Zhang Q, et al. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv Energy Mater 2018;8:1702472.

132. Zhou L, Martirez JMP, Finzel J, et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat Energy 2020;5:61-70.

133. Shoji S, Peng X, Yamaguchi A, et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat Catal 2020;3:148-53.

134. Zhao YX, Yang B, Li HF, et al. Photoassisted selective steam and dry reforming of methane to syngas catalyzed by rhodium-vanadium bimetallic oxide cluster anions at room temperature. Angew Chem Int Ed Engl 2020;59:21216-23.

135. Wang X, Zhao X, Zhang D, Li G, Li H. Microwave irradiation induced UIO-66-NH2 anchored on graphene with high activity for photocatalytic reduction of CO2. Appl Catal B-Environ 2018;228:47-53.

136. Wang Y, Wang S, Lou XWD. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew Chem Int Ed Engl 2019;58:17236-40.

137. Wang G, He CT, Huang R, Mao J, Wang D, Li Y. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to Liquid fuels. J Am Chem Soc 2020;142:19339-45.

138. Yang W, Wang HJ, Liu RR, et al. Tailoring crystal facets of metal-organic layers to enhance photocatalytic activity for CO2 reduction. Angew Chem Int Ed Engl 2021;60:409-14.

139. Li J, Huang H, Xue W, et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat Catal 2021;4:719-29.

140. Qi X, Zhong R, Chen M, et al. Single Metal-organic cage decorated with an Ir(III) complex for CO2 photoreduction. ACS Catal 2021;11:7241-8.

141. Liu J, Li N, Sun J, et al. Ferrocene-functionalized polyoxo-titanium cluster for CO2 photoreduction. ACS Catal 2021;11:4510-9.

142. Zhu S, Chen X, Li Z, et al. Cooperation between inside and outside of TiO2: Lattice Cu+ accelerates carrier migration to the surface of metal copper for photocatalytic CO2 reduction. Appl Catal B-Environ 2020;264:118515.

143. Campos-Martin JM, Blanco-Brieva G, Fierro JL. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew Chem Int Ed Engl 2006;45:6962-84.

144. Sato K, Aoki M, Noyori R. A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998;281:1646-7.

145. Zhan W, Ji L, Ge Z, Wang X, Li R. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant. Tetrahedron 2018;74:1527-32.

146. Ksibi M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment. Chem Eng J 2006;119:161-5.

147. Gurram RN, Al-Shannag M, Lecher NJ, Duncan SM, Singsaas EL, Alkasrawi M. Bioconversion of paper mill sludge to bioethanol in the presence of accelerants or hydrogen peroxide pretreatment. Bioresour Technol 2015;192:529-39.

148. Yamazaki S, Siroma Z, Senoh H, Ioroi T, Fujiwara N, Yasuda K. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J Power Sources 2008;178:20-5.

149. Chen X, Kondo Y, Kuwahara Y, Mori K, Louis C, Yamashita H. Metal-organic framework-based nanomaterials for photocatalytic hydrogen peroxide production. Phys Chem Chem Phys 2020;22:14404-14.

150. Haider Z, Cho H, Moon G, Kim H. Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. Catalysis Today 2019;335:55-64.

151. Su J, Vayssieres L. A place in the sun for artificial photosynthesis? ACS Energy Lett 2016;1:121-35.

152. Lewis NS. Developing a scalable artificial photosynthesis technology through nanomaterials by design. Nat Nanotechnol 2016;11:1010-9.

153. Faunce TA, Lubitz W, Rutherford AW, et al. Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ Sci 2013;6:695.

154. Yang Y, Zeng Z, Zeng G, et al. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl Catal B-Environ 2019;258:117956.

155. Wu S, Yu H, Chen S, Quan X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal 2020;10:14380-9.

156. Xie Y, Li Y, Huang Z, et al. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl Catal B-Environ 2020;265:118581.

157. Zhang P, Tong Y, Liu Y, et al. Heteroatom dopants promote two-electron O2 reduction for photocatalytic production of H2O2 on polymeric carbon nitride. Angew Chem Int Ed Engl 2020;59:16209-17.

158. Zhou L, Lei J, Wang F, et al. Carbon nitride nanotubes with in situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production. Appl Catal B-Environ 2021;288:119993.

159. Chen L, Chen C, Yang Z, Li S, Chu C, Chen B. Simultaneously tuning band structure and oxygen reduction pathway toward high-efficient photocatalytic hydrogen peroxide production using cyano-rich graphitic carbon nitride. Adv Funct Mater 2021;31:2105731.

160. Isaka Y, Kondo Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanoparticles. Chem Commun (Camb) 2018;54:9270-3.

161. Chen X, Kuwahara Y, Mori K, Louis C, Yamashita H. Introduction of a secondary ligand into titanium-based metal-organic frameworks for visible-light-driven photocatalytic hydrogen peroxide production from dioxygen reduction. J Mater Chem A 2021;9:2815-21.

162. Krishnaraj C, Sekhar Jena H, Bourda L, et al. Strongly Reducing (Diarylamino)benzene-based covalent organic framework for metal-free visible light photocatalytic H2O2 generation. J Am Chem Soc 2020;142:20107-16.

163. Mal DD, Khilari S, Pradhan D. Efficient and selective oxidation of toluene to benzaldehyde on manganese tungstate nanobars: a noble metal-free approach. Green Chem 2018;20:2279-89.

164. Isaka Y, Kawase Y, Kuwahara Y, Mori K, Yamashita H. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew Chem Int Ed Engl 2019;58:5402-6.

165. Kawase Y, Isaka Y, Kuwahara Y, Mori K, Yamashita H. Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chem Commun (Camb) 2019;55:6743-6.

166. Chen X, Kuwahara Y, Mori K, Louis C, Yamashita H. A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J Mater Chem A 2020;8:1904-10.

167. Huang Y, Chong X, Liu C, Liang Y, Zhang B. Boosting hydrogen production by anodic oxidation of primary amines over a nise nanorod electrode. Angew Chem Int Ed Engl 2018;57:13163-6.

168. Martin A, Kalevaru VN. Heterogeneously catalyzed ammoxidation: a valuable tool for one-step synthesis of nitriles. ChemCatChem 2010;2:1504-22.

169. Łuczak T. Electrochemical behaviour of benzylamine, 2-phenylethylamine and 4-hydroxyphenylethylamine at gold. A comparative study. J Appl Electrochem 2007;38:43-50.

170. Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem 2010;53:7902-17.

171. Wang T, Jiao N. Direct approaches to nitriles via highly efficient nitrogenation strategy through C-H or C-C bond cleavage. Acc Chem Res 2014;47:1137-45.

172. Yan G, Zhang Y, Wang J. Recent advances in the synthesis of aryl nitrile compounds. Adv Synth Catal 2017;359:4068-105.

173. Liu RY, Bae M, Buchwald SL. Mechanistic insight facilitates discovery of a mild and efficient copper-catalyzed dehydration of primary amides to nitriles using hydrosilanes. J Am Chem Soc 2018;140:1627-31.

174. Tian Z, Han C, Zhao Y, et al. Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS3 nanobelts. Nat Commun 2021;12:2039.

175. Shiraishi Y, Kanazawa S, Kofuji Y, et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew Chem Int Ed Engl 2014;53:13454-9.

176. Ma R, Wang L, Wang H, et al. Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of titania nanotube with carbon dot. Appl Catal B-Environ 2019;244:594-603.

177. Zeng X, Liu Y, Kang Y, et al. Simultaneously tuning charge separation and oxygen reduction pathway on graphitic carbon nitride by polyethylenimine for boosted photocatalytic hydrogen peroxide production. ACS Catal 2020;10:3697-706.

178. Zhao Y, Liu Y, Cao J, et al. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl Catal B-Environ 2020;278:119289.

179. Zhao Y, Liu Y, Wang Z, et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl Catal B-Environ 2021;289:120035.

180. Wu Q, Cao J, Wang X, et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat Commun 2021;12:483.

181. Teng Z, Zhang Q, Yang H, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nat Catal 2021;4:374-84.

182. Ye YX, Pan J, Xie F, et al. Highly efficient photosynthesis of hydrogen peroxide in ambient conditions. Proc Natl Acad Sci U S A 2021;118:e2103964118.

Energy Materials
ISSN 2770-5900 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/