REFERENCES
1. Pan Z, Yang J, Zhang Y, Gao X, Wang J. Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. J Mater Chem A 2020;8:6406-33.
2. Wang L, Fu X, He J, et al. Application challenges in fiber and textile electronics. Adv Mater 2020;32:e1901971.
3. Manjakkal L, Pullanchiyodan A, Yogeswaran N, Hosseini ES, Dahiya R. A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte. Adv Mater 2020;32:e1907254.
4. Lai Y, Lu H, Wu H, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors. Adv Energy Mater 2021;11:2100411.
5. Yang J, Li G, Pan Z, et al. All-solid-state high-energy asymmetric supercapacitors enabled by three-dimensional mixed-valent MnOx nanospike and graphene electrodes. ACS Appl Mater Interfaces 2015;7:22172-80.
6. Zhu M, Wang Z, Li H, et al. Light-permeable, photoluminescent microbatteries embedded in the color filter of a screen. Energy Environ Sci 2018;11:2414-22.
7. Ma W, Zhang Y, Pan S, et al. Smart fibers for energy conversion and storage. Chem Soc Rev 2021;50:7009-61.
8. Lee C, Lai K, Lin C, et al. A paper-based electrode using a graphene dot/PEDOT:PSS composite for flexible solar cells. Nano Energy 2017;36:260-7.
9. Song W, Fan X, Xu B, et al. All-solution-processed metal-oxide-free flexible organic solar cells with over 10% efficiency. Adv Mater 2018;30:e1800075.
10. Tian J, Cui N, Chen P, Guo K, Chen X. High-performance wearable supercapacitors based on PANI/N-CNT@CNT fiber with a designed hierarchical core-sheath structure. J Mater Chem A 2021;9:20635-44.
11. Yang Z, Jia Y, Niu Y, et al. One-step wet-spinning assembly of twisting-structured graphene/carbon nanotube fiber supercapacitor. Journal of Energy Chemistry 2020;51:434-41.
12. Yuan D, Li B, Cheng J, et al. Twisted yarns for fiber-shaped supercapacitors based on wetspun PEDOT:PSS fibers from aqueous coagulation. J Mater Chem A 2016;4:11616-24.
13. Wang Z, Cheng J, Guan Q, et al. All-in-one fiber for stretchable fiber-shaped tandem supercapacitors. Nano Energy 2018;45:210-9.
14. Zhang L, Yang X, Zhang F, et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J Am Chem Soc 2013;135:5921-9.
15. Ma W, Li W, Li M, et al. Unzipped carbon nanotube/graphene hybrid fiber with less “dead volume” for ultrahigh volumetric energy density supercapacitors. Adv Funct Mater 2021;31:2100195.
16. Qu G, Cheng J, Li X, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 2016;28:3646-52.
17. Jalili R, Razal JM, Innis PC, Wallace GG. One-step wet-spinning process of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 2011;21:3363-70.
18. Kim N, Kee S, Lee SH, et al. Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 2014;26:2268-72, 2109.
19. Lang U, Müller E, Naujoks N, Dual J. Microscopical Investigations of PEDOT:PSS thin films. Adv Funct Mater 2009;19:1215-20.
20. Vosgueritchian M, Lipomi DJ, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv Funct Mater 2012;22:421-8.
21. Cai S, Huang T, Chen H, Salman M, Gopalsamy K, Gao C. Wet-spinning of ternary synergistic coaxial fibers for high performance yarn supercapacitors. J Mater Chem A 2017;5:22489-94.
22. Xu D, Shen H, Wang W, et al. Effect of H2SO4 solution treatment on adhesion, charge transfer, and catalytic performance of screen-printed PEDOT:PSS. Chemphyschem 2019;20:374-82.
23. Li Y, Ren G, Zhang Z, et al. A strong and highly flexible aramid nanofibers/PEDOT:PSS film for all-solid-state supercapacitors with superior cycling stability. J Mater Chem A 2016;4:17324-32.
24. Alemu D, Wei H, Ho K, Chu C. Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 2012;5:9662.
25. Xu T, Yang D, Zhang S, Zhao T, Zhang M, Yu Z. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 2021;171:201-10.
26. Xu H, Hu X, Sun Y, Yang H, Liu X, Huang Y. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res 2015;8:1148-58.
27. Li B, Cheng J, Wang Z, Li Y, Ni W, Wang B. Highly-wrinkled reduced graphene oxide-conductive polymer fibers for flexible fiber-shaped and interdigital-designed supercapacitors. J Power Sources 2018;376:117-24.
28. Sun P, Lin R, Wang Z, et al. Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 2017;31:432-40.
29. Noh J, Yoon C, Kim YK, Jang J. High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 2017;116:470-8.
30. Kou L, Huang T, Zheng B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 2014;5:3754.
31. Sun G, Zhang X, Lin R, Yang J, Zhang H, Chen P. Hybrid fibers made of molybdenum disulfide, reduced graphene oxide, and multi-walled carbon nanotubes for solid-state, flexible, asymmetric supercapacitors. Angew Chem Int Ed Engl 2015;54:4651-6.
32. Meng C, Qian Y, He J, Dong X. Wet-spinning fabrication of multi-walled carbon nanotubes reinforced poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) hybrid fibers for high-performance fiber-shaped supercapacitor. J Mater Sci: Mater Electron 2020;31:19293-308.