1 | Hydrothermal Synthesis of Flexible Fe‐Doped Polyaniline/Dye‐Functionalized Carbon Felt Electrode for Supercapacitor Applications. 2022;7: doi: 10.1002/slct.202200016 |
2 | Carbon Structures with Hollow Internal Cavity as Charge Storage Materials to Achieve High Energy Density. 2023;37:9568 doi: 10.1021/acs.energyfuels.3c00913 |
3 | Biodegradable MoNx@Mo-foil electrodes for human-friendly supercapacitors. 2024;12:5749 doi: 10.1039/D4TB00649F |
4 | |
5 | Spent Tea-Waste-Derived Porous Carbon-Supported Truncated Octahedral Cu2O for Highly Efficient Energy Storage Devices. 2023;37:14350 doi: 10.1021/acs.energyfuels.3c02375 |
6 | High rate and ultralong cyclelife fiber‐shaped sodium dual‐ion battery based on bismuth anodes and polytriphenylamine cathodes. 2023;2: doi: 10.1002/bte2.20220035 |
7 | Portable self-charging power unit with integrated flexible supercapacitor and triboelectric nanogenerator. 2024;971:172716 doi: 10.1016/j.jallcom.2023.172716 |
8 | Nanometric MnO2 and MnO2‐Graphene Oxide Materials Enabled by a Solvent‐Assisted Synthesis and Their Application in Asymmetric Supercapacitors. 2023;11: doi: 10.1002/ente.202201243 |
9 | Quinone-based imide conjugated microporous polymer-reductive graphene oxide composite as an efficient electrode for hybrid supercapacitors. 2023;47:8355 doi: 10.1039/D3NJ00967J |
10 | |
11 | A Low‐Cost Moderate‐Concentration Hybrid Electrolyte of Introducing CaCl2 and Ethylene Glycerol Enables Low‐Temperature and High‐Voltage Micro‐Supercapacitors. 2024;34: doi: 10.1002/adfm.202313395 |
12 | 3D cellulose network confining MXene/MnO2 enables flexible wet spinning microfibers for high-performance fiber-shaped Zn-ion capacitors. 2024;276:134152 doi: 10.1016/j.ijbiomac.2024.134152 |
13 | Scaling Supercapacitive Swing Adsorption of CO2 Using Bipolar Electrode Stacks. 2024;20: doi: 10.1002/smll.202303243 |
14 | Biomass Hierarchical Porous Carbonized Typha angustifolia Prepared by Green Pore-Making Technology for Energy Storage. 2023;8:1353 doi: 10.1021/acsomega.2c06782 |
15 | Copper sulfide nanoparticles on titanium dioxide (TiO2) nanoflakes: A new hybrid asymmetrical Faradaic supercapacitors with high energy density and superior lifespan. 2022;55:105651 doi: 10.1016/j.est.2022.105651 |
16 | Architectural engineering of vertically expanded graphene-CoMn2O4 compounds based interdigital electrode for in-plane micro-supercapacitor. 2023;969:172414 doi: 10.1016/j.jallcom.2023.172414 |
17 | Niobium- and cobalt-modified dual-source-derived porous carbon with a honeycomb-like stable structure for supercapacitor and hydrogen evolution reaction. 2023;639:33 doi: 10.1016/j.jcis.2023.02.032 |
18 | Holey Ti3C2 MXene-Derived Anode Enables Boosted Kinetics in Lithium-Ion Capacitors. 2023;15:12161 doi: 10.1021/acsami.2c21327 |
19 | |
20 | Bioenzyme activation preparation of Fe3O4/carbon nanofibers as supercapacitor electrode materials. 2023;29:1617 doi: 10.1007/s11581-023-04899-y |
21 | |
22 | Bio-inspired combinable self-powered soft device operating during the disintegration and reconstruction for next-generation artificial electric organs. 2023;32:101836 doi: 10.1016/j.apmt.2023.101836 |
23 | Sustainable and Printable Nanocellulose-Based Ionogels as Gel Polymer Electrolytes for Supercapacitors. 2022;12:273 doi: 10.3390/nano12020273 |
24 | Multifunctional structural composite fibers in energy storage by extrusion-based manufacturing. 2023;38:2615 doi: 10.1557/s43578-023-01014-9 |
25 | Polyanilines from spent battery powder and activated carbon: Electrodes for asymmetric supercapacitor cell. 2022;139: doi: 10.1002/app.52864 |
26 | Brine Refrigerants for Low‐cost, Safe Aqueous Supercapacitors with Ultra‐long Stable Operation at Low Temperatures. 2023;33: doi: 10.1002/adfm.202208206 |
27 | Ultrahigh power output and durable flexible all-polymer triboelectric nanogenerators enabled by rational surface engineering. 2023;11:10174 doi: 10.1039/D2TA09975F |
28 | |
29 | Bifunctional Shared Fibers for High-Efficiency Self-Powered Fiber-Shaped Photocapacitors. 2023;5:130 doi: 10.1007/s42765-022-00218-8 |
30 | Synergistic behavior of vanadium pentoxide-carbon sphere electrocatalyst towards iron-based redox flow battery and supercapacitor applications. 2022;55:105487 doi: 10.1016/j.est.2022.105487 |
31 | Lithiation-induced controllable vacancy engineering for developing highly active Ni3Se2 as a high-rate and large-capacity battery-type cathode in hybrid supercapacitors. 2023;78:37 doi: 10.1016/j.jechem.2022.11.027 |
32 | Hierarchically 3D Fibrous Electrode for High‐Performance Flexible AC‐Line Filtering in Fluctuating Energy Harvesters. 2023;33: doi: 10.1002/adfm.202305039 |
33 | Synthesis of Cauliflower-like Reduced Graphene Oxide Nickel Sulfide Nanocomposites for the Vanadium Redox Battery and Supercapacitor Application. 2023;5:3698 doi: 10.1021/acsaelm.3c00426 |