1 | Novel Protonic Conductor SrLa2Sc2O7 with Layered Structure for Electrochemical Devices. 2022;15:8867 doi: 10.3390/ma15248867 |
2 | Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells. 2024;3:100231 doi: 10.1016/j.apmate.2024.100231 |
3 | Enhancing the performance and long-term stability of layered structure Li1-xNaxNi0.80Co0.15Al0.05O2-δ via Na-doped strategy for solid oxide fuel cells. 2024;92:1401 doi: 10.1016/j.ijhydene.2024.10.269 |
4 | Showcasing the Potential of Iron-Doped Electrolytes to Enhance the Ionic Conduction for a Low-Temperature Ceramics Fuel Cell. 2023;6:10829 doi: 10.1021/acsaem.3c01476 |
5 | Ni/NiO Exsolved Perovskite La0.2Sr0.7Ti0.9Ni0.1O3−δ for Semiconductor-Ionic Fuel Cells: Roles of Electrocatalytic Activity and Physical Junctions. 2023;15:870 doi: 10.1021/acsami.2c16002 |
6 | |
7 | Proton Conduction and Electrochemical Performance of La/Pr co-Doped Ceria Electrolyte in Ceramic Fuel Cell. 2024;11:449 doi: 10.1007/s40684-023-00532-5 |
8 | Development of a Core–Shell Heterojunction TiO2/SrTiO3 Electrolyte with Improved Ionic Conductivity. 2022;23: doi: 10.1002/cphc.202200170 |
9 | Designing p-n heterostructure of LSCF-CeO2 material for ionic transportation as an electrolyte for semiconductor ion membrane fuel cell. 2024;50:428 doi: 10.1016/j.ijhydene.2023.08.204 |
10 | Catalytically Active and Carbon-Resistive Anode Catalyst for Solid-Oxide Fuel Cells Operated at Low Temperatures (500–600 °C). 2023;6:6401 doi: 10.1021/acsaem.3c00181 |
11 | Novel n–i CeO2/a-Al2O3 Heterostructure Electrolyte Derived from the Insulator a-Al2O3 for Fuel Cells. 2023;15:2419 doi: 10.1021/acsami.2c18240 |
12 | Perspective and control of cation interdiffusion and interface reactions in solid oxide fuel cells (SOFCs). 2023;292:116415 doi: 10.1016/j.mseb.2023.116415 |
13 | Spinel Ni-doped LiMn2O4 cathode material with high oxygen reduction catalytic performance for low temperature solid ceramic fuel cells. 2024;50:5150 doi: 10.1016/j.ceramint.2023.11.259 |
14 | |
15 | A niobium and tantalum co-doped perovskite electrolyte with high ionic conduction for low-temperature Ceramics Fuel cell. 2024;236:121466 doi: 10.1016/j.renene.2024.121466 |
16 | Cross-linked solid–liquid interfaces enable a fast proton transport in the aluminate heterostructure electrolyte. 2023;645:823 doi: 10.1016/j.jcis.2023.04.159 |
17 | Optimizing oxygen vacancies and electrochemical performance of CeO2−δ nanosheets through the combination of di- and tri-valent doping. 2023;13:27233 doi: 10.1039/D3RA04847K |
18 | Lithium zirconate coated LiNi0.8Co0.15Al0.05O2 as a high-performance electrode material for advanced fuel cells. 2022;48:17076 doi: 10.1016/j.ceramint.2022.02.263 |
19 | |
20 | Interfacial Disordering and Heterojunction Enabling Fast Proton Conduction. 2023;7: doi: 10.1002/smtd.202300450 |
21 | A multi-dimensional hierarchical strategy building melamine sponge-derived tetrapod carbon supported cobalt–nickel tellurides 0D/3D nanohybrids for boosting hydrogen evolution and triiodide reduction reaction. 2022;624:650 doi: 10.1016/j.jcis.2022.05.147 |
22 | |
23 | Exceptionally high proton conductivity in Eu2O3 by proton-coupled electron transfer mechanism. 2024;27:108612 doi: 10.1016/j.isci.2023.108612 |
24 | Preparation and Performance of LiNi1–xAlxO2 Electrodes for Low-Temperature Ceramic Fuel Cells. 2024;7:576 doi: 10.1021/acsaem.3c02488 |
25 | Layer-structured Li1-xNaxNi0.8Co0.15Al0.05O2-δ oxide anode for enhancing ceria electrolyte based solid ceramic fuel cell operating at lower temperatures down to 370 °C. 2023;336:120788 doi: 10.1016/j.apenergy.2023.120788 |
26 | Recent advance in physical description and material development for single component SOFC: A mini-review. 2022;444:136533 doi: 10.1016/j.cej.2022.136533 |
27 | Electronic engineering and oxygen vacancy modification of La0.6Sr0.4FeO3−δ perovskite oxide by low-electronegativity sodium substitution for efficient CO2/CO fueled reversible solid oxide cells. 2024;26:3202 doi: 10.1039/D3GC04451C |
28 | Cerium-Doped Oxide-Based Materials for Energy and Environmental Applications. 2023;13:1631 doi: 10.3390/cryst13121631 |
29 | Synergistic effects and electrocatalytic insight of single-phase hexagonal structure as low-temperature solid oxide fuel cell cathode. 2024; doi: 10.1016/j.jre.2024.06.027 |
30 | Effects of Ceria on the Oxygen Reduction Activity and Thermal Cycling Stability of BaCo0.4Fe0.4Zr0.1Y0.1O3−δ Cathode for Solid Oxide Fuel Cells. 2022;5:14391 doi: 10.1021/acsaem.2c02949 |
31 | Constructing highly active surface-nanostructured core/bi-shell La1.2Sr0.8Ni0.5Mn0.5O4+δ cathode for protonic ceramic fuel cells. 2023;459:141459 doi: 10.1016/j.cej.2023.141459 |
32 | Gadolinium-Doped Ceria–NaCoO2 Heterogeneous Semiconductor Ionic Materials for Solid Oxide Fuel Cell Application. 2023;6:9508 doi: 10.1021/acsaem.3c01487 |
33 | Facile Construction of Zn‐Doped Mn3O4−MnO2 Vertical Nanosheets for Aqueous Zinc‐Ion Battery Cathodes. 2022;9: doi: 10.1002/celc.202200750 |
34 | Space Charge Polarization Effect in Surface-Coated BaTiO3 Electrolyte for Low-Temperature Ceramic Fuel Cell. 2024;7:1128 doi: 10.1021/acsaem.3c02633 |
35 | Constructing double-shell structured N-C-in-Co/N-C electrocatalysts with nanorod- and rhombic dodecahedron-shaped hollow morphologies to boost electrocatalytic activity for hydrogen evolution and triiodide reduction reaction. 2022;449:137854 doi: 10.1016/j.cej.2022.137854 |
36 | Fe-Doped Ba0.9K0.1FexCo1–xO3−δ Perovskite Cathode Material for Low-Temperature Solid Oxide Fuel Cells. 2023;6:6917 doi: 10.1021/acsaem.3c00314 |
37 | Experimental Activities on a Hydrogen-Powered Solid Oxide Fuel Cell System and Guidelines for Its Implementation in Aviation and Maritime Sectors. 2023;16:5671 doi: 10.3390/en16155671 |
38 | Designing nitrogen-enriched heterogeneous NiS@CoNi2S4 embedded in nitrogen-doped carbon with hierarchical 2D/3D nanocage structure for efficient alkaline hydrogen evolution and triiodide reduction. 2023;630:91 doi: 10.1016/j.jcis.2022.09.136 |
39 | |
40 | |
41 | Defect engineering tuning electron structure of biphasic tungsten-based chalcogenide heterostructure improves its catalytic activity for hydrogen evolution and triiodide reduction. 2022;625:800 doi: 10.1016/j.jcis.2022.06.051 |
42 | Redefining electrolyte efficiency: bridging the gap with a systematic samarium–copper co-doping approach for optimized conductivity in advanced semiconductor ionic fuel cell. 2025;4:025102 doi: 10.1088/2752-5724/adbcc9 |
43 | |
44 | |
45 | Fast ionic transport in SrTiO3/LaAlO3 heterostructure. 2022;58:13919 doi: 10.1039/D2CC05205A |
46 | Semiconductor Heterostructure (SFT–SnO2) Electrolyte with Enhanced Ionic Conduction for Ceramic Fuel Cells. 2023;6:6518 doi: 10.1021/acsaem.3c00442 |
47 | Optimizing Low-Temperature Ceramic Fuel Cells with CuFe2O4–CeO2 Heterostructures. 2023;6:12494 doi: 10.1021/acsaem.3c02417 |
48 | Highly Efficient Oxygen Reduction Reaction Fe-N-C Cathode in Long-durable Direct Glycol Fuel Cells. 2022;38:1268 doi: 10.1007/s40242-022-2223-6 |
49 | Advances and Perspectives on Solid Oxide Fuel Cells: From Nanotechnology to Power Electronics Devices. 2023;11: doi: 10.1002/ente.202300452 |
50 | Novel Perovskite Structured Nd0.5Ba0.5Co1/3Ni1/3Mn1/3O3−δ as Highly Efficient Catalyst for Oxygen Electrode in Solid Oxide Electrochemical Cells. 2023;15:59512 doi: 10.1021/acsami.3c14336 |
51 | Exploring alkali metal doping in solid oxide cells materials: A comprehensive review. 2024;493:152832 doi: 10.1016/j.cej.2024.152832 |
52 | |