REFERENCES
1. Formenti, D.; Ferretti, F.; Scharnagl, F. K.; Beller, M. Reduction of nitro compounds using 3d-non-noble metal catalysts. Chem. Rev. 2019, 119, 2611-80.
3. Blaser, H.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: an update. ChemCatChem 2009, 1, 210-21.
4. Yu, M.; Ouyang, D.; Wang, L.; Liu, Y. N. Catalytic reduction of aromatic nitro compounds to phenylhydroxylamine and its derivatives. Molecules 2024, 29, 4353.
5. Wang, H.; Zhang, W.; Liu, Y.; Pu, M.; Lei, M. First-Principles study on the mechanism of nitrobenzene reduction to aniline catalyzed by a N-doped carbon-supported cobalt single-atom catalyst. J. Phys. Chem. C. 2021, 125, 19171-82.
6. Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-4.
7. Lin, L.; Yao, S.; Gao, R.; et al. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation. Nat. Nanotechnol. 2019, 14, 354-61.
8. Gao, R.; Guo, H.; Wang, B.; Qiu, P.; Sun, M.; Chen, L. Co based N, S co-doped carbon hybrids for catalytic hydrogenation: role of cobalt salt and doped S. Appl. Catal. A-Gen. 2019, 579, 99-105.
9. Gao, R.; Xu, J.; Wang, J.; et al. Pd/Fe2O3 with electronic coupling single-site Pd-Fe pair sites for low-temperature semihydrogenation of alkynes. J. Am. Chem. Soc. 2022, 144, 573-81.
10. Liu, F.; Gao, R.; Shi, C.; et al. Avoiding Sabatier’s limitation on spatially correlated Pt-Mn atomic pair sites for oxygen electroreduction. J. Am. Chem. Soc. 2023, 145, 25252-63.
11. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.
12. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-8.
13. Wang, H.; Shi, F.; Pu, M.; Lei, M. Theoretical study on nitrobenzene hydrogenation by N-doped carbon-supported late transition metal single-atom catalysts. ACS. Catal. 2022, 12, 11518-29.
14. Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 2020, 120, 683-733.
15. Greeley, J.; Mavrikakis, M. Alloy catalysts designed from first principles. Nat. Mater. 2004, 3, 810-5.
16. Deng, P.; Duan, J.; Liu, F.; et al. Atomic insights into synergistic nitroarene hydrogenation over nanodiamond-supported Pt1-Fe1 dual-single-atom catalyst. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307853.
17. Macino, M.; Barnes, A. J.; Althahban, S. M.; et al. Tuning of catalytic sites in Pt/TiO2 catalysts for the chemoselective hydrogenation of 3-nitrostyrene. Nat. Catal. 2019, 2, 873-81.
18. Li, X.; Yang, X.; Huang, Y.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, e1902031.
19. Deelen TW, Hernández Mejía C, de Jong KP. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955-70.
20. Xu, D.; Liu, R.; Li, J.; Zhao, H.; Ma, J.; Dong, Z. Atomically dispersed Co-N4 sites anchored on N-doped carbon for aqueous phase transfer hydrogenation between nitroarenes and saturated N-heterocycles. Appl. Catal. B. Environ. 2021, 299, 120681.
22. Xing, L.; Jin, Y.; Weng, Y.; et al. Top-down synthetic strategies toward single atoms on the rise. Matter 2022, 5, 788-807.
23. Chen, R.; Chen, S.; Wang, L.; Wang, D. Nanoscale metal particle modified single-atom catalyst: synthesis, characterization, and application. Adv. Mater. 2024, 36, e2304713.
24. He, T.; Chen, S.; Ni, B.; et al. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem. Int. Ed. Engl. 2018, 57, 3493-8.
25. Xi, J.; Jung, H. S.; Xu, Y.; Xiao, F.; Bae, J. W.; Wang, S. Single-atom catalysts: synthesis strategies, catalytic applications, and performance regulation of single-atom catalysts Adv Funct Mater 2021;31:2170081.
26. Huang, Y.; Xiong, J.; Zou, Z.; Chen, Z. Emerging strategies for the synthesis of correlated single atom catalysts. Adv. Mater. 2025, 37, e2312182.
27. Xue, K.; Mo, Y.; Long, B.; et al. Single-atom catalysts supported on ordered porous materials: Synthetic strategies and applications. InfoMat 2022, 4, e12296.
28. Ding, S.; Hülsey, M. J.; Pérez-ramírez, J.; Yan, N. Transforming energy with single-atom catalysts. Joule 2019, 3, 2897-929.
29. Cheng, N.; Zhang, L.; Doyle-davis, K.; Sun, X. Single-atom catalysts: from design to application. Electrochem. Energ. Rev. 2019, 2, 539-73.
30. Li, L.; Chang, X.; Lin, X.; Zhao, Z. J.; Gong, J. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156-78.
31. Xue, Z.; Luan, D.; Zhang, H.; Lou, XW(D). Single-atom catalysts for photocatalytic energy conversion. Joule 2022, 6, 92-133.
32. Xiong, H.; Datye, A. K.; Wang, Y. Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 2021, 33, e2004319.
33. Singh, B.; Gawande, M. B.; Kute, A. D.; et al. Single-atom (iron-based) catalysts: synthesis and applications. Chem. Rev. 2021, 121, 13620-97.
34. Ye, Y.; Xu, J.; Gao, L.; et al. CuO/CeO2 catalysts prepared by modified impregnation method for ethyl acetate oxidation. Chem. Eng. J. 2023, 471, 144667.
35. Li, Y.; Yang, L.; He, H.; et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat. Commun. 2022, 13, 1355.
36. Zhang, Z.; Chen, Y.; Zhou, L.; et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.
37. Ji, D.; Fan, L.; Li, L.; et al. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, e1808267.
38. Sun, G.; Zhao, Z. J.; Mu, R.; et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.
39. Zhang, Z.; Feng, C.; Liu, C.; et al. Electrochemical deposition as a universal route for fabricating single-atom catalysts. Nat. Commun. 2020, 11, 1215.
40. Wenderich, K.; Mul, G. Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 2016, 116, 14587-619.
41. Oros-ruiz, S.; Pedraza-avella, J. A.; Guzmán, C.; et al. Effect of gold particle size and deposition method on the photodegradation of 4-chlorophenol by Au/TiO2. Top. Catal. 2011, 54, 519-26.
42. Liu, P.; Zhao, Y.; Qin, R.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-801.
44. Libera, J.; Elam, J.; Pellin, M. Conformal ZnO coatings on high surface area silica gel using atomic layer deposition. Thin. Solid. Films. 2008, 516, 6158-66.
45. Elam, J. W.; Routkevitch, D.; Mardilovich, P. P.; George, S. M. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem. Mater. 2003, 15, 3507-17.
46. Lu, J.; Fu, B.; Kung, M. C.; et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205-8.
47. Yan, H.; Cheng, H.; Yi, H.; et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-7.
48. Zwiener, L.; Girgsdies, F.; Brennecke, D.; et al. Evolution of zincian malachite synthesis by low temperature co-precipitation and its catalytic impact on the methanol synthesis. Appl. Catal. B. Environ. 2019, 249, 218-26.
49. Behrens, M. Coprecipitation: an excellent tool for the synthesis of supported metal catalysts - from the understanding of the well known recipes to new materials. Catal. Today. 2015, 246, 46-54.
50. Sun, L.; Cao, L.; Su, Y.; Wang, C.; Lin, J.; Wang, X. Ru1/FeOx single-atom catalyst with dual active sites for water gas shift reaction without methanation. Appl. Catal. B. Environ. 2022, 318, 121841.
51. Peng, J.; Yang, W.; Jia, Z.; Jiao, L.; Jiang, H. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano. Res. 2022, 15, 10063-9.
52. Qi, H.; Yang, J.; Liu, F.; et al. Highly selective and robust single-atom catalyst Ru1/NC for reductive amination of aldehydes/ketones. Nat. Commun. 2021, 12, 3295.
53. Deng, D.; Yu, L.; Chen, X.; et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem. 2013, 52, 371-5.
54. Yang, J.; Qiu, Z.; Zhao, C.; et al.
55. Yao, Y.; Huang, Z.; Xie, P.; et al. High temperature shockwave stabilized single atoms. Nat. Nanotechnol. 2019, 14, 851-7.
56. Li, R.; Xu, J.; Zhao, Q.; et al. Cathodic corrosion as a facile and universal method for the preparation of supported metal single atoms. Nano. Res. 2022, 15, 1838-44.
57. Deng, D.; Chen, X.; Yu, L.; et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462.
58. Cui, X.; Xiao, J.; Wu, Y.; et al. A graphene composite material with single cobalt active sites: a highly efficient counter electrode for dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 2016, 55, 6708-12.
59. Khan, K.; Liu, T.; Arif, M.; et al. Laser-irradiated holey graphene-supported single-atom catalyst towards hydrogen evolution and oxygen reduction. Adv. Energy. Mater. 2021, 11, 2101619.
60. James, S. L.; Adams, C. J.; Bolm, C.; et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 2012, 41, 413-47.
61. Yang, J.; Li, W.; Wang, D.; Li, Y. Electronic Metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv. Mater. 2020, 32, e2003300.
62. Ouyang, R.; Liu, J. X.; Li, W. X. Atomistic theory of Ostwald ripening and disintegration of supported metal particles under reaction conditions. J. Am. Chem. Soc. 2013, 135, 1760-71.
63. Xu, H.; Zhang, Z.; Liu, J.; et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.
64. Liu, J.; Bunes, B. R.; Zang, L.; Wang, C. Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2018, 16, 477-505.
65. Wu, M.; Zhang, G.; Wang, W.; et al. Electronic metal-support interaction modulation of single-atom electrocatalysts for rechargeable zinc-air batteries. Small. Methods. 2022, 6, e2100947.
66. Qi, P.; Wang, J.; Djitcheu, X.; He, D.; Liu, H.; Zhang, Q. Techniques for the characterization of single atom catalysts. RSC. Adv. 2021, 12, 1216-27.
67. Li, X.; Yang, X.; Zhang, J.; Huang, Y.; Liu, B.
68. Jiang, J.; Tong, M.; Shen, D.; et al. Utilizing molybdenum to tailor the electronic structure of iron through electron complementary effect for promoting oxygen reduction activity. Adv. Funct. Mater. 2025, 35, 2500065.
69. Guo, W.; Pan, M.; Xie, Q.; et al. Achieving pH-universal oxygen electrolysis via synergistic density and coordination tuning over biomass-derived Fe single-atom catalyst. Nat. Commun. 2025, 16, 2920.
70. Zhang, L.; Zong, L.; Lu, F.; et al. Metal-saloph complexes pre-coordination for Fe single atom catalyst towards oxygen reduction reaction in rechargeable quasi-solid-state Zn-air battery. Appl. Catal. B. Environ. 2025, 370, 125189.
71. Zhang, S.; Sun, B.; Liao, K.; et al. Boosting oxygen reduction reaction performance of Fe single-atom catalysts via precise control of the coordination environment. Adv. Funct. Mater. 2025, 35, 2425640.
72. Li, S.; Kan, Z.; Wang, H.; et al. Single-atom photo-catalysts: synthesis, characterization, and applications. Nano. Mater. Sci. 2024, 6, 284-304.
73. Dai, H.; Hu, T.; Zhu, S.; Zhang, Y.; Zhou, W. Regulating the Fe-Nx coordination structure of Fe single-atom catalysts for efficient catalytic degradation of methylparaben. Chem. Eng. J. 2025, 507, 160462.
74. Lan, L.; Wu, Y.; Pei, Y.; et al. High-density accessible iron single-atom catalyst for durable and temperature-adaptive laminated zinc-air batteries. Adv. Mater. 2025, 37, e2417711.
75. Wang, C.; Chen, B.; Ren, H.; et al. Stabilizing Ni single-atom sites through introducing low-valence Ni Species for durably efficient electrochemical CO2 reduction. Appl. Catal. B. Environ. 2025, 368, 125151.
76. Zhang, Z. Q.; Duan, P. J.; Bai, C. W.; Chen, X. J.; Wang, J.; Chen, F. Surface-hydroxylated single-atom catalyst with an isolated Co-O-Zn configuration achieves high selectivity in regulating active species. Nat. Commun. 2025, 16, 2376.
77. Gallenkamp, C.; Kramm, U. I.; Proppe, J.; Krewald, V. Calibration of computational Mössbauer spectroscopy to unravel active sites in FeNC catalysts for the oxygen reduction reaction. Int. J. Quantum. Chem. 2021, 121, e26394.
78. Bates, J. S.; Martinez, J. J.; Hall, M. N.; et al. Chemical kinetic method for active-site quantification in Fe-N-C catalysts and correlation with molecular probe and spectroscopic site-counting methods. J. Am. Chem. Soc. 2023, 145, 26222-37.
79. Wu, B.; Yang, H.; Li, L.; et al. Integrating PtCo intermetallic with highly graphitized carbon toward durable oxygen electroreduction in proton exchange membrane fuel cells. Adv. Mater. 2025, 37, e2500096.
80. Zhao, J.; Deng, Q.; Avdoshenko, S. M.; Fu, L.; Eckert, J.; Rümmeli, M. H. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 15641-6.
81. Guo, X.; Qi, W.; Liu, W.; et al. Oxidative dehydrogenation on nanocarbon: revealing the catalytic mechanism using model catalysts. ACS. Catal. 2017, 7, 1424-7.
82. Pan, L.; Wang, J.; Lu, F.; et al. Single-atom or dual-atom in TiO2 nanosheet: which is the better choice for electrocatalytic urea synthesis? Angew. Chem. Int. Ed. Engl. 2023, 62, e202216835.
83. Li, X.; Liu, L.; Ren, X.; Gao, J.; Huang, Y.; Liu, B. Microenvironment modulation of single-atom catalysts and their roles in electrochemical energy conversion. Sci. Adv. 2020, 6.
84. Wei, H.; Liu, X.; Wang, A.; et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 2014, 5, 5634.
85. Ren, Y.; Tang, Y.; Zhang, L.; et al. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.
86. Vilé, G.; Albani, D.; Nachtegaal, M.; et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. Engl. 2015, 54, 11265-9.
87. Li, J.; Zhong, L.; Tong, L.; et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423.
88. Dasgupta, A.; He, H.; Gong, R.; et al. Atomic control of active-site ensembles in ordered alloys to enhance hydrogenation selectivity. Nat. Chem. 2022, 14, 523-9.
89. Yang, J.; Yang, L.; Zhang, L.; et al. Hydrogenation reactions with synergistic catalysis of Pd single atoms and nanoparticles under near-ambient conditions. Chemistry 2023, 29, e202203108.
90. Shen, X.; Liu, K. Discrete Au1(0) stabilized by 15-crown-5 for high-efficiency catalytic reduction of nitrophenol and nitroaniline. Catalysts 2023, 13, 776.
91. Fu, H.; Zhang, H.; Yang, G.; et al. Highly dispersed rhodium atoms supported on defect-rich Co(OH)2 for the chemoselective hydrogenation of nitroarenes. New. J. Chem. 2022, 46, 1158-67.
92. Wang, W.; Lin, L.; Qi, H.; et al. MIL-53 (Al) derived single-atom Rh catalyst for the selective hydrogenation of m-chloronitrobenzene into m-chloroaniline. Chinese. J. Catal. 2021, 42, 824-34.
93. Wu, B.; Lin, T.; Yang, R.; et al. Ru single atoms for efficient chemoselective hydrogenation of nitrobenzene to azoxybenzene. Green. Chem. 2021, 23, 4753-61.
94. Ma, Y.; Ren, Y.; Zhou, Y.; et al. High-density and thermally stable palladium single-atom catalysts for chemoselective hydrogenations. Angew. Chem. Int. Ed. Engl. 2020, 59, 21613-9.
95. Campbell, C. T. Physics. The active site in nanoparticle gold catalysis. Science 2004, 306, 234-5.
96. Sun, Q.; Wang, N.; Zhang, T.; et al. Inside cover: zeolite-encaged single-atom rhodium catalysts: highlyefficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 2019, 58, 18300.
97. Li, H.; Sun, Z.; Fan, Y.; et al. Enhancing hydride formation and transfer for catalytic hydrogenation via electron-deficient single-atom silver. J. Colloid. Interface. Sci. 2025, 682, 751-9.
98. Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Iron-catalyzed selective reduction of nitroarenes to anilines using organosilanes. Chem. Commun. (Camb). 2010, 46, 1769-71.
99. Liu, W.; Zhang, L.; Yan, W.; et al. Single-atom dispersed Co-N-C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758-64.
100. Zhou, P.; Jiang, L.; Wang, F.; Deng, K.; Lv, K.; Zhang, Z. High performance of a cobalt-nitrogen complex for the reduction and reductive coupling of nitro compounds into amines and their derivatives. Sci. Adv. 2017, 3, e1601945.
101. Cheng, T.; Yu, H.; Peng, F.; Wang, H.; Zhang, B.; Su, D. Identifying active sites of CoNC/CNT from pyrolysis of molecularly defined complexes for oxidative esterification and hydrogenation reactions. Catal. Sci. Technol. 2016, 6, 1007-15.
102. Wei, X.; Hu, Z.; Li, C.; et al. High-density atomically dispersed CoNx catalysts supported on nitrogen-doped mesoporous carbon materials for efficient hydrogenation of nitro compounds. Catal. Today. 2022, 405-406, 92-100.
103. Sheng, Y.; Wang, X.; Yue, S.; Cheng, G.; Zou, X.; Lu, X.
104. Li, M.; Chen, S.; Jiang, Q.; et al. Origin of the activity of Co-N-C catalysts for chemoselective hydrogenation of nitroarenes. ACS. Catal. 2021, 11, 3026-39.
105. Liu, X.; Wang, C.; Meng, J.; et al. Single-atom cobalt catalysts for chemoselective hydrogenation of nitroarenes to anilines. Chin. Chem. Lett. 2023, 34, 108745.
106. Li, A. Y.; Pedersen, A.; Feng, J.; et al. From haemoglobin to single-site hydrogenation catalyst. Green. Chem. 2022, 24, 7574-83.
107. Zhang, T.; Xie, Z.; Jiang, L.; et al. Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon. Chem. Eng. J. 2022, 443, 136416.
108. Liang, J.; Song, Q.; Wu, J.; et al. Anchoring copper single atoms on porous boron nitride nanofiber to boost selective reduction of nitroaromatics. ACS. Nano. 2022, 16, 4152-61.
109. Yang, F.; Wang, M.; Liu, W.; et al. Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes. Green. Chem. 2019, 21, 704-11.
110. Liu, W.; Chen, Y.; Qi, H.; et al. A durable nickel single-atom catalyst for hydrogenation reactions and cellulose valorization under harsh conditions. Angew. Chem. Int. Ed. Engl. 2018, 57, 7071-5.
111. Qin, L.; Chen, W.; Lai, C.; et al. Highly efficient reduction of nitrophenols by Fe-N-C single-atom catalyst: performance and mechanism insights. J. Environl. Chem. Eng. 2023, 11, 110278.
112. Cheong, W. C.; Yang, W.; Zhang, J.; et al. Isolated iron single-atomic site-catalyzed chemoselective transfer hydrogenation of nitroarenes to arylamines. ACS. Appl. Mater. Interfaces. 2019, 11, 33819-24.
113. Lu, G.; Sun, K.; Lin, Y.; et al. Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes. Nano. Res. 2022, 15, 603-11.
114. Song, Y.; Guo, R.; Feng, B.; et al. Coordination number engineering of Zn single-atom sites for enhanced transfer hydrogenation performance. Chem. Eng. J. 2023, 465, 142920.
115. Yang, X.; Xu, L.; Li, Y. Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev. 2024, 516, 215961.
116. Zhou, D.; Zeng, K.; Wang, L.; Tang, F. The d-p electron coupling over the unsaturated oxygen coordinated CuCo alloy surface for enhanced N-heteroarenes hydrogenation under mild conditions. J. Energy. Chem. 2025, 106, 671-80.
117. Yang, Y.; Zhang, W.; Wu, G.; et al. Electronic structure tuning in Cu-Co dual single atom catalysts for enhanced COOH* spillover and electrocalytic CO2 reduction activity. Angew. Chem. Int. Ed. Engl. 2025, 64, e202504423.
118. Liu, H.; Zhu, P.; Yang, D.; et al. Pd-Mn/NC dual single-atomic sites with hollow mesopores for the highly efficient semihydrogenation of phenylacetylene. J. Am. Chem. Soc. 2024, 146, 2132-40.
119. Park, D.; Hong, S.; Han, J.; et al. Insights into the synergy effect in dual single-atom catalysts on defective CeO2 under CO2 hydrogenation. Appl. Catal. B. Environ. 2025, 365, 124987.
120. Gong, L.; Qiu, L.; Xing, X.; et al. Coupling Fe-Co atomic pair to promote the selective reduction of nitroaromatics under mild conditions. Sci. Total. Environ. 2024, 912, 169161.
121. Mu, Y.; Wang, T.; Zhang, J.; Meng, C.; Zhang, Y.; Kou, Z. Single-atom catalysts: advances and challenges in metal-support interactions for enhanced electrocatalysis. Electrochem. Energy. Rev. 2022, 5, 145-86.
122. Lin, L.; Chen, Z.; Chen, W. Single atom catalysts by atomic diffusion strategy. Nano. Res. 2021, 14, 4398-416.
123. Lou, Y.; Wu, H.; Liu, J. Nanocarbon-edge-anchored high-density Pt atoms for 3-nitrostyrene hydrogenation: strong metal-carbon interaction. iScience 2019, 13, 190-8.
124. Zhang, G.; Tang, F.; Wang, X.; An, P.; Wang, L.; Liu, Y. Co,N-codoped porous carbon-supported Coy ZnS with superior activity for nitroarene hydrogenation. ACS. Sustain. Chem. Eng. 2020, 8, 6118-26.
125. Wei, X.; Zhang, Z.; Zhou, M.; Zhang, A.; Wu, W. D.; Wu, Z. Solid-state nanocasting synthesis of ordered mesoporous CoNx-carbon catalysts for highly efficient hydrogenation of nitro compounds. Nanoscale 2018, 10, 16839-47.
126. Li, H.; Cao, C.; Liu, J.; et al. Cobalt single atoms anchored on N-doped ultrathin carbon nanosheets for selective transfer hydrogenation of nitroarenes. Sci. China. Mater. 2019, 62, 1306-14.
127. Li, J.; Chen, S.; Liu, M.; et al. Self-template construction of high-performance Co, N-decorated carbon nanotubes from a novel cobalt dicyandiamide molecule. ChemCatChem 2021, 13, 2609-17.
128. Yan, X.; Duan, P.; Zhang, F.; et al. Stable single-atom platinum catalyst trapped in carbon onion graphitic shells for improved chemoselective hydrogenation of nitroarenes. Carbon 2019, 143, 378-84.
129. Gu, Y.; Wu, A.; Wang, L.; et al. A “competitive occupancy” strategy toward Co-N4 single-atom catalysts embedded in 2D TiN/rGO sheets for highly efficient and stable aromatic nitroreduction. J. Mater. Chem. A. 2020, 8, 4807-15.
130. Yan, H.; Zhao, X.; Guo, N.; et al. Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat. Commun. 2018, 9, 3197.
131. Xi, J.; Sun, H.; Wang, D.; et al. Confined-interface-directed synthesis of Palladium single-atom catalysts on graphene/amorphous carbon. Appl. Catal. B. Environ. 2018, 225, 291-7.
132. Ma, T.; Tan, X.; Zhao, Q.; et al. Template-oriented synthesis of Fe-N-codoped graphene nanoshells derived from petroleum pitch for efficient nitroaromatics reduction. Ind. Eng. Chem. Res. 2020, 59, 129-36.
133. Wang, C.; Ye, B.; Zhou, R.; Jiang, Y.; Hou, Z. Structure-activity relationship for the catalytic hydrogenation of nitrobenzene by single platinum atoms supported on nitrogen-doped carbon. ACS. Appl. Nano. Mater. 2022, 5, 13601-11.
134. Chen, J.; Yao, Y.; Zhao, J.; et al. A highly active non-precious metal catalyst based on Fe-N-C@CNTs for nitroarene reduction. RSC. Adv. 2016, 6, 96203-9.
135. Jones, J.; Xiong, H.; DeLaRiva, A. T.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-4.
136. Wang, C.; Mao, S.; Wang, Z.; et al. Insight into single-atom-induced unconventional size dependence over CeO2-supported Pt catalysts. Chem 2020, 6, 752-65.
137. Han, B.; Guo, Y.; Huang, Y.; et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. Engl. 2020, 59, 11824-9.
138. Ye, T. N.; Xiao, Z.; Li, J.; et al. Stable single platinum atoms trapped in sub-nanometer cavities in 12CaO·7Al2O3 for chemoselective hydrogenation of nitroarenes. Nat. Commun. 2020, 11, 1020.
139. Li, Z.; Zhang, M.; Dong, X.; et al. Strong electronic interaction of indium oxide with palladium single atoms induced by quenching toward enhanced hydrogenation of nitrobenzene. Appl. Catal. B. Environ. 2022, 313, 121462.
140. Shi, X.; Wang, X.; Shang, X.; Zou, X.; Ding, W.; Lu, X. High performance and active sites of a ceria-supported palladium catalyst for solvent-free chemoselective hydrogenation of nitroarenes. ChemCatChem 2017, 9, 3743-51.
141. Wang, J.; Zhang, Y.; Xu, X.; Bao, M. Oxygen vacancy-rich Ni-CeO2 heterojunction catalyst for hydrogenating halogenated nitroarenes with high activity and selectivity. ACS. Appl. Mater. Interfaces. 2023, 15, 8149-56.
142. Liu, R.; Zhang, L. Q.; Yu, C.; Sun, M. T.; Liu, J. F.; Jiang, G. B. Atomic-level-designed catalytically active palladium atoms on ultrathin gold nanowires. Adv. Mater. 2017, 29.
143. Ji, P.; Manna, K.; Lin, Z.; et al. Single-site cobalt catalysts at new Zr12(μ3-O)8(μ3)-OH)8(μ2-OH)6 metal-organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 2017, 139, 7004-11.
144. Antil, N.; Kumar, A.; Akhtar, N.; et al. Aluminum metal-organic framework-ligated single-site nickel(II)-hydride for heterogeneous chemoselective catalysis. ACS. Catal. 2021, 11, 3943-57.
145. Sun, X.; Olivos-suarez, A. I.; Oar-arteta, L.; et al. Metal-organic framework mediated cobalt/nitrogen-doped carbon hybrids as efficient and chemoselective catalysts for the hydrogenation of nitroarenes. ChemCatChem 2017, 9, 1854-62.
146. Zhang, M.; Liu, Y.; Zhao, H.; et al. Pd anchored on a phytic acid/thiourea polymer as a highly active and stable catalyst for the reduction of nitroarene. ACS. Appl. Mater. Interfaces. 2021, 13, 19904-14.
147. He, J.; Li, N.; Li, Z.; et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv. Funct. Mater. 2021, 31, 2103597.
148. Peng, Y.; Geng, Z.; Zhao, S.; et al. Pt single atoms embedded in the surface of Ni nanocrystals as highly active catalysts for selective hydrogenation of nitro compounds. Nano. Lett. 2018, 18, 3785-91.
149. Chugh, V.; Chatterjee, B.; Chang, W. C.; et al. An adaptive rhodium catalyst to control the hydrogenation network of nitroarenes. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205515.
150. Zhang, H.; Zhang, X.; Sun, Q.; He, Q.; Ji, H.; He, X. Boosting hydrogenation properties of Pt single-atom catalysts via tailoring the electronic structures by coordination number regulation. Chem. Eng. J. 2023, 455, 140808.
151. Zhao, X.; Wang, L.; Zhang, G.; et al. Breaking the trade-off between CO tolerance and intrinsic activity in hydrogenation on metal oxide-supported noble metal single atoms through coordination environment engineering. ACS. Catal. 2024, 14, 15325-35.
152. Feng, B.; Guo, R.; Cai, Q.; et al. Construction of isolated Ni sites on nitrogen-doped hollow carbon spheres with Ni-N3 configuration for enhanced reduction of nitroarenes. Nano. Res. 2022, 15, 6001-9.
153. Wang, L.; Zhu, C.; Xu, M.; et al. Boosting activity and stability of metal single-atom catalysts via regulation of coordination number and local composition. J. Am. Chem. Soc. 2021, 143, 18854-8.
154. Tian, S.; Hu, M.; Xu, Q.; et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China. Mater. 2021, 64, 642-50.
155. Li, X.; She, W.; Wang, J.; Li, W.; Li, G. Highly efficient N-doped carbon supported FeSx-Fe2O3 catalyst for hydrogenation of nitroarenes via pyrolysis of sulfurized N,Fe-containing MOFs. Appl. Organomet. Chem. 2021, 35, e6294.
156. Jin, H.; Li, P.; Cui, P.; et al. Unprecedentedly high activity and selectivity for hydrogenation of nitroarenes with single atomic
157. Cao, F.; Ni, W.; Zhao, Q.; et al. Precisely manipulating the local coordination of cobalt single-atom catalyst boosts selective hydrogenation of nitroarenes. Appl. Catal. B. Environ. 2024, 346, 123762.
158. Zhang, G.; Tang, F.; Wang, X.; Wang, L.; Liu, Y. Atomically dispersed Co-S-N active sites anchored on hierarchically porous carbon for efficient catalytic hydrogenation of nitro compounds. ACS. Catal. 2022, 12, 5786-94.
159. Zhao, Q.; Xu, D.; Wang, L.; et al. A core-shell confinement strategy towards single-atom Fe-N/S-C bifunctional catalyst for selective nitroarene reduction and olefin epoxidation. J. Alloy. Compd. 2025, 1012, 178488.
160. Tang, F.; Zhang, G.; Wang, L.; Huang, J.; Liu, Y. Unsymmetrically N, S-coordinated single-atom cobalt with electron redistribution for catalytic hydrogenation of quinolines. J. Catal. 2022, 414, 101-8.
161. Chen, G.; Gu, J.; Gong, W.; et al. Precisely tailoring the second coordination sphere of a cobalt single-atom catalyst for selective hydrogenation of halogenated nitroarenes. Angew. Chem. Int. Ed. Engl. 2025, 64, e202421277.
162. Duan, Y.; Xia, Y.; Ling, Y.; et al. Regulating second-shell coordination in cobalt single-atom catalysts toward highly selective hydrogenation. ACS. Nano. 2024, 18, 21326-35.
163. Wei, H.; Ren, Y.; Wang, A.; et al. Remarkable effect of alkalis on the chemoselective hydrogenation of functionalized nitroarenes over high-loading Pt/FeOx catalysts. Chem. Sci. 2017, 8, 5126-31.
164. Iihama, S.; Furukawa, S.; Komatsu, T. Efficient catalytic system for chemoselective hydrogenation of halonitrobenzene to haloaniline using PtZn intermetallic compound. ACS. Catal. 2016, 6, 742-6.
165. Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem. Int. Ed. Engl. 2016, 55, 8319-23.
166. Zhang, F.; Li, J.; Liu, P.; et al. Ultra-high loading single CoN3 sites in N-doped graphene-like carbon for efficient transfer hydrogenation of nitroaromatics. J. Catal. 2021, 400, 40-9.
167. Lin, Y.; Nie, R.; Li, Y.; et al. Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano. Res. 2022, 15, 10006-13.
168. Wang, C.; Dang, J.; Han, Y.; Zeng, Q.; Wang, L. Carbon nanotube-supported Co-N-C with enriched mesopores for hydrogenation of nitro compounds. J. Catal. 2025, 447, 116152.
169. Guo, M.; Meng, Q.; Gao, M. L.; et al. Single-atom Pt loaded on MOF-derived porous TiO2 with maxim-ized Pt atom utilization for selective hydrogenation of halonitro-benzene. Angew. Chem. Int. Ed. Engl. 2025, 64, e202418964.
170. Cao, F.; Zhao, Q.; Tan, X.; et al. A pre-coordinated strategy precisely tailors the coordination structure of single-atom sites toward efficient catalysis. Adv. Funct. Mater. 2025, 35, 2423398.
171. Sun, X.; Olivos-suarez, A. I.; Osadchii, D.; Romero, M. J. V.; Kapteijn, F.; Gascon, J. Single cobalt sites in mesoporous N-doped carbon matrix for selective catalytic hydrogenation of nitroarenes. J. Catal. 2018, 357, 20-8.
172. Lian, L.; Zhang, G.; Zhao, X.; Huang, J.; Wang, L.; Liu, Y. Protein-metal ion networks coated carbon matrix as a precursor: to construct carbon-supported Mo-based catalysts with highly exposed active sites for hydrogenation of nitro compounds. New. J. Chem. 2024, 48, 8331-7.
173. Chen, R.; Wang, X.; Dang, J.; et al. Shedding light on the reversible deactivation of carbon-supported single-atom catalysts in hydrogenation reaction. Nano. Res. 2024, 17, 4807-14.
174. Huang, H.; Han, X.; Zhao, Q.; et al. An in-situ etching strategy toward fully exposed Fe-N5 active sites for boosted nitroaromatic reduction. Appl. Surf. Sci. 2025, 689, 162592.
175. Gong, X.; Li, D.; Zhang, Q.; et al. Cobalt single atoms supported on monolithic carbon with a hollow-on-hollow architecture for efficient transfer hydrogenations. Nano. Res. 2023, 16, 11358-65.
176. Huang, R.; Cao, C.; Liu, J.; et al. Integration of metal single atoms on hierarchical porous nitrogen-doped carbon for highly efficient hydrogenation of large-sized molecules in the pharmaceutical industry. ACS. Appl. Mater. Interfaces. 2020, 12, 17651-8.
177. Haber, F. Über stufenweise Reduktion des Nitrobenzols mit begrenztem Kathodenpotential. Zeitschrift. für. Elektrochemie. 1898, 4, 506-14. (in German).
178. Millán, R.; Liu, L.; Boronat, M.; Corma, A. A new molecular pathway allows the chemoselective reduction of nitroaromatics on non-noble metal catalysts. J. Catal. 2018, 364, 19-30.
179. Gelder, E. A.; Jackson, S. D.; Lok, C. M. The hydrogenation of nitrobenzene to aniline: a new mechanism. Chem. Commun. (Camb). 2005, , 522-4.
180. Corma, A.; Concepción, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem. Int. Ed. Engl. 2007, 46, 7266-9.
181. Yu, M.; Zhang, G.; Li, K.; Tang, F.; Wang, L.; Liu, Y. Ni nanoparticles decorated Ni-N-C catalyst: dual-site synergy for enhanced catalytic hydrogenation. AIChE. J. 2025, 71, e18830.
182. He, T.; Zhang, C.; Zhang, L.; Du, A. Single Pt atom decorated graphitic carbon nitride as an efficient photocatalyst for the hydrogenation of nitrobenzene into aniline. Nano. Res. 2019, 12, 1817-23.