REFERENCES

1. Martino, G.; Juguin, B.; Boitiaux, J. P. Catalysts and processes for C4’s cuts upgrading. Stud. Surf. Sci. Catal. 1989, 44, 167-74.

2. O’connor, C.; Kojima, M. Alkene oligomerization. Catal. Today. 1990, 6, 329-49.

3. Chada, J. P.; Xu, Z.; Zhao, D.; et al. Oligomerization of 1-butene over carbon-supported CoOx and subsequent isomerization/hydroformylation to n-nonanal. Catal. Commun. 2018, 114, 93-7.

4. Françoisse, O.; Thyrion, F. Kinetics and mechanism of ethyl tert-butyl ether liquid-phase synthesis. Chem. Eng. Process. Process. Intensif. 1991, 30, 141-9.

5. Wang, Z.; Santander, de. Soto. L.; Méthivier, C.; Casale, S.; Louis, C.; Delannoy, L. A selective and stable Fe/TiO2 catalyst for selective hydrogenation of butadiene in alkene-rich stream. Chem. Commun. 2021, 57, 7031-4.

6. Wang, M.; Wang, Y.; Mou, X.; Lin, R.; Ding, Y. Design strategies and structure-performance relationships of heterogeneous catalysts for selective hydrogenation of 1,3-butadiene. Chin. J. Catal. 2022, 43, 1017-41.

7. Pattamakomsan, K.; Suriye, K.; Dokjampa, S.; Mongkolsiri, N.; Praserthdam, P.; Panpranot, J. Effect of mixed Al2O3 structure between θ- and α-Al2O3 on the properties of Pd/Al2O3 in the selective hydrogenation of 1,3-butadiene. Catal. Commun. 2010, 11, 311-6.

8. Pattamakomsan, K.; Ehret, E.; Morfin, F.; et al. Selective hydrogenation of 1,3-butadiene over Pd and Pd–Sn catalysts supported on different phases of alumina. Catal. Today. 2011, 164, 28-33.

9. Hou, R.; Porosoff, M. D.; Chen, J. G.; Wang, T. Effect of oxide supports on Pd–Ni bimetallic catalysts for 1,3-butadiene hydrogenation. Appl. Catal. A. Gen. 2015, 490, 17-23.

10. Kolli, N. E.; Delannoy, L.; Louis, C. Bimetallic Au–Pd catalysts for selective hydrogenation of butadiene: influence of the preparation method on catalytic properties. J. Catal. 2013, 297, 79-92.

11. Yi, H.; Xia, Y.; Yan, H.; Lu, J. Coating Pd/Al2O3 catalysts with FeOx enhances both activity and selectivity in 1,3-butadiene hydrogenation. Chin. J. Catal. 2017, 38, 1581-7.

12. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.

13. Wang, A.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65-81.

14. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

15. Zhou, H.; Wu, Y. The next decade of single-atom materials. Sci. Bull. 2023, 68, 465-8.

16. Yan, H.; Cheng, H.; Yi, H.; et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 2015, 137, 10484-7.

17. Yan, H.; Lv, H.; Yi, H.; et al. Understanding the underlying mechanism of improved selectivity in pd1 single-atom catalyzed hydrogenation reaction. J. Catal. 2018, 366, 70-9.

18. Huang, X.; Yan, H.; Huang, L.; et al. Toward understanding of the support effect on Pd1 single-atom-catalyzed hydrogenation reactions. J. Phys. Chem. C. 2019, 123, 7922-30.

19. Xiong, H.; Datye, A. K.; Wang, Y. Thermally stable single-atom heterogeneous catalysts. Adv. Mater. 2021, 33, e2004319.

20. Liu, S.; Li, J.; Xiong, H. Thermally-stable single-atom catalysts and beyond: a perspective. Front. Chem. 2022, 10, 959525.

21. Qin, R.; Zhou, L.; Liu, P.; et al. Alkali ions secure hydrides for catalytic hydrogenation. Nat. Catal. 2020, 3, 703-9.

22. Jones, J.; Xiong, H.; DeLaRiva, A. T.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-4.

23. Wang, Y. R.; Zhuang, Q.; Cao, R.; et al. Reduction-controlled atomic migration for single atom alloy library. Nano. Lett. 2022, 22, 4232-9.

24. Hou, Z.; Lu, Y.; Liu, Y.; et al. A general dual-metal nanocrystal dissociation strategy to generate robust high-temperature-stable alumina-supported single-atom catalysts. J. Am. Chem. Soc. 2023, 145, 15869-78.

25. Lv, H.; Guo, W.; Chen, M.; Zhou, H.; Wu, Y. Rational construction of thermally stable single atom catalysts: from atomic structure to practical applications. Chin. J. Catal. 2022, 43, 71-91.

26. Hai, X.; Xi, S.; Mitchell, S.; et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174-81.

27. Xie, F.; Cui, X.; Zhi, X.; et al. A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2023, 2, 129-39.

28. Tauster, S. J.; Fung, S. C.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170-5.

29. Tauster, S. J.; Fung, S. C.; Baker, R. T.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121-5.

30. Hu, P.; Huang, Z.; Amghouz, Z.; et al. Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. Engl. 2014, 53, 3418-21.

31. Liu, X.; Liu, M. H.; Luo, Y. C.; et al. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation. J. Am. Chem. Soc. 2012, 134, 10251-8.

32. Wang, H.; Wang, L.; Lin, D.; et al. Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle. Nat. Catal. 2021, 4, 418-24.

33. Dong, J.; Fu, Q.; Li, H.; et al. Reaction-induced strong metal-support interactions between metals and inert boron nitride nanosheets. J. Am. Chem. Soc. 2020, 142, 17167-74.

34. Yu, J.; Chen, W.; He, F.; Song, W.; Cao, C. Electronic oxide-support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst. J. Am. Chem. Soc. 2023, 145, 1803-10.

35. Wu, G.; Liu, Y.; Wang, J. Oxidative-atmosphere-induced strong metal-support interaction and its catalytic application. Acc. Chem. Res. 2023, 56, 911-23.

36. Nakayama, A.; Sodenaga, R.; Gangarajula, Y.; et al. Enhancement effect of strong metal-support interaction (SMSI) on the catalytic activity of substituted-hydroxyapatite supported Au clusters. J. Catal. 2022, 410, 194-205.

37. Liu, X.; Gu, Q.; Zhang, Y.; et al. Atomically thick oxide overcoating stimulates low-temperature reactive metal-support interactions for enhanced catalysis. J. Am. Chem. Soc. 2023, 145, 6702-9.

38. Pu, T.; Zhang, W.; Zhu, M. Engineering heterogeneous catalysis with strong metal-support interactions: characterization, theory and manipulation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202212278.

39. Ro, I.; Resasco, J.; Christopher, P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS. Catal. 2018, 8, 7368-87.

40. Han, B.; Guo, Y.; Huang, Y.; et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. Engl. 2020, 59, 11824-9.

41. Guo, Y.; Huang, Y.; Zeng, B.; et al. Photo-thermo semi-hydrogenation of acetylene on Pd1/TiO2 single-atom catalyst. Nat. Commun. 2022, 13, 2648.

42. Bernal, S.; Calvino, J.; Cauqui, M.; et al. Some contributions of electron microscopy to the characterisation of the strong metal–support interaction effect. Catal. Today. 2003, 77, 385-406.

43. Zhang, S.; Plessow, P. N.; Willis, J. J.; et al. Dynamical observation and detailed description of catalysts under strong metal-support interaction. Nano. Lett. 2016, 16, 4528-34.

44. Jeong, H.; Bae, J.; Han, J. W.; Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS. Catal. 2017, 7, 7097-105.

45. Xin, P.; Li, J.; Xiong, Y.; et al. Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew. Chem. Int. Ed. 2018, 130, 4732-6.

46. Gulyaev, R.; Stadnichenko, A.; Slavinskaya, E.; Ivanova, A.; Koscheev, S.; Boronin, A. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl. Catal. A. Gen. 2012, 439-40, 41-50.

47. Boronin, A.; Slavinskaya, E.; Danilova, I.; et al. Investigation of palladium interaction with cerium oxide and its state in catalysts for low-temperature CO oxidation. Catal. Today. 2009, 144, 201-11.

48. Chen, Y.; Chen, J.; Qu, W.; et al. Well-defined palladium-ceria interfacial electronic effects trigger CO oxidation. Chem. Commun. 2018, 54, 10140-3.

49. Zhang, Y.; Cai, Y.; Guo, Y.; et al. The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation. Catal. Sci. Technol. 2014, 4, 3973-80.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/