REFERENCES

1. Tavasoli, A.; Gouda, A.; Zähringer, T.; et al. Enhanced hybrid photocatalytic dry reforming using a phosphated Ni-CeO2 nanorod heterostructure. Nat. Commun. 2023, 14, 1435.

2. Wang, Z.; Lv, Q.; Li, A.; et al. Reveal and correlate working geometry and surface chemistry of Ni nanocatalysts in CO2 reforming of methane. Mater. Today. 2024, 79, 16-27.

3. Zhang, J.; Wang, L.; Zhao, X.; et al. The nature of active sites for plasmon-mediated photothermal catalysis and heat-coupled photocatalysis in dry reforming of methane. Energy. Environ. Mater. 2023, 6, e12416.

4. Yu, X.; Yu, Z.; Zhao, H.; Gates, I. D.; Hu, J. Photothermal catalytic H2 production over hierarchical porous CaTiO3 with plasmonic gold nanoparticles. Chem. Synth. 2023, 3, 3.

5. Zhou, L.; Swearer, D. F.; Zhang, C.; et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 2018, 362, 69-72.

6. Zhang, J.; Chen, H.; Duan, X.; Sun, H.; Wang, S. Photothermal catalysis: from fundamentals to practical applications. Mater. Today. 2023, 68, 234-53.

7. Vakili, R.; Gholami, R.; Stere, C. E.; et al. Plasma-assisted catalytic dry reforming of methane (DRM) over metal-organic frameworks (MOFs)-based catalysts. Appl. Catal. B. Environ. 2020, 260, 118195.

8. Liu, X.; Mu, Z.; Sun, C.; et al. Highly efficient solar-driven CO2-to-fuel conversion assisted by CH4 over NiCo-ZIF derived catalysts. Fuel 2022, 310, 122441.

9. Tang, Y.; Li, Y.; Bao, W.; et al. Enhanced dry reforming of CO2 and CH4 on photothermal catalyst Ru/SrTiO3. Appl. Catal. B. Environ. 2023, 338, 123054.

10. Zhou, Z.; Sarmad, S.; Huang, C.; Deng, G.; Sun, Z.; Duan, L. Ni-based catalyst supported on ordered mesoporous Al2O3 for dry CH4 reforming: effect of the pore structure. Int. J. Hydrogen. Energy. 2024, 52, 275-88.

11. Huang, L.; Li, D.; Tian, D.; et al. Optimization of Ni-based catalysts for dry reforming of methane via alloy design: a review. Energy. Fuels. 2022, 36, 5102-51.

12. Truong-Phuoc, L.; Essyed, A.; Pham, X.; et al. Catalytic methane decomposition process on carbon-based catalyst under contactless induction heating. Chem. Synth. 2024, 4, 56.

13. Zhang, Z.; Huang, Z.; Yu, X.; et al. Photo-thermal coupled single-atom catalysis boosting dry reforming of methane beyond thermodynamic limits over high equivalent flow. Nano. Energy. 2024, 123, 109401.

14. Zhou, L.; Martirez, J. M. P.; Finzel, J.; et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy. 2020, 5, 61-70.

15. Liu, H.; Song, H.; Zhou, W.; Meng, X.; Ye, J. A promising application of optical hexagonal TaN in photocatalytic reactions. Angew. Chem. Int. Ed. Engl. 2018, 57, 16781-4.

16. Pan, F.; Xiang, X.; Deng, W.; Zhao, H.; Feng, X.; Li, Y. A novel photo-thermochemical approach for enhanced carbon dioxide reforming of methane. ChemCatChem 2018, 10, 940-5.

17. Zhou, W.; Wang, B.; Tang, L.; et al. Photocatalytic dry reforming of methane enhanced by “dual-path” strategy with excellent low-temperature catalytic performance. Adv. Funct. Mater. 2023, 33, 2214068.

18. Yao, Y.; Li, B.; Gao, X.; et al. Highly efficient solar-driven dry reforming of methane on a Rh/LaNiO3 catalyst through a light-induced metal-to-metal charge transfer process. Adv. Mater. 2023, 35, e2303654.

19. Takami, D.; Tsubakimoto, J.; Sarwana, W.; Yamamoto, A.; Yoshida, H. Photothermal dry reforming of methane over phyllosilicate-derived silica-supported nickel catalysts. ACS. Appl. Energy. Mater. 2023, 6, 7627-35.

20. Rao, Z.; Wang, K.; Cao, Y.; et al. Light-reinforced key intermediate for anticoking to boost highly durable methane dry reforming over single atom Ni active sites on CeO2. J. Am. Chem. Soc. 2023, 145, 24625-35.

21. Li, Q.; Wang, H.; Zhang, M.; Li, G.; Chen, J.; Jia, H. Suppressive strong metal-support interactions on ruthenium/TiO2 promote light-driven photothermal CO2 reduction with methane. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300129.

22. Zhang, Q.; Mao, M.; Li, Y.; et al. Novel photoactivation promoted light-driven CO2 reduction by CH4 on Ni/CeO2 nanocomposite with high light-to-fuel efficiency and enhanced stability. Appl. Catal. B. Environ. 2018, 239, 555-64.

23. Liu, H.; Dao, T. D.; Liu, L.; Meng, X.; Nagao, T.; Ye, J. Light assisted CO2 reduction with methane over group VIII metals: universality of metal localized surface plasmon resonance in reactant activation. Appl. Catal. B. Environ. 2017, 209, 183-9.

24. Huang, H.; Mao, M.; Zhang, Q.; et al. Solar-light-driven CO2 reduction by CH4 on silica-cluster-modified Ni nanocrystals with a high solar-to-fuel efficiency and excellent durability. Adv. Energy. Mater. 2018, 8, 1702472.

25. Wu, S.; Li, Y.; Zhang, Q.; et al. High light-to-fuel efficiency and CO2 reduction rates achieved on a unique nanocomposite of Co/Co doped Al2O3 nanosheets with UV-vis-IR irradiation. Energy. Environ. Sci. 2019, 12, 2581-90.

26. Pan, F.; Xiang, X.; Du, Z.; Sarnello, E.; Li, T.; Li, Y. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating. Appl. Catal. B. Environ. 2020, 260, 118189.

27. Liu, H.; Meng, X.; Dao, T. D.; et al. Light assisted CO2 reduction with methane over SiO2 encapsulated Ni nanocatalysts for boosted activity and stability. J. Mater. Chem. A. 2017, 5, 10567-73.

28. Jiang, Z.; Li, Y.; Zhang, Q.; et al. A novel nanocomposite of mesoporous silica supported Ni nanocrystals modified by ceria clusters with extremely high light-to-fuel efficiency for UV-vis-IR light-driven CO2 reduction. J. Mater. Chem. A. 2019, 7, 4881-92.

29. Zhang, Q.; Li, Y.; Wu, S.; et al. UV-vis-IR irradiation driven CO2 reduction with high light-to-fuel efficiency on a unique nanocomposite of Ni nanoparticles loaded on Ni doped Al2O3 nanosheets. J. Mater. Chem. A. 2019, 7, 19800-10.

30. Rao, Z.; Cao, Y.; Huang, Z.; et al. Insights into the nonthermal effects of light in dry reforming of methane to enhance the H2/CO ratio near unity over Ni/Ga2O3. ACS. Catal. 2021, 11, 4730-8.

31. Sun, M.; Zhao, B.; Chen, F.; et al. Thermally-assisted photocatalytic CO2 reduction to fuels. Chem. Eng. J. 2021, 408, 127280.

32. Han, B.; Wei, W.; Chang, L.; Cheng, P.; Hu, Y. H. Efficient visible light photocatalytic CO2 reforming of CH4. ACS. Catal. 2016, 6, 494-7.

33. Liu, G.; Meng, X.; Zhang, H.; et al. Elemental boron for efficient carbon dioxide reduction under light irradiation. Angew. Chem. Int. Ed. Engl. 2017, 56, 5570-4.

34. Wang, S. J.; Su, D.; Zhang, T. Research progress of surface plasmons mediated photothermal effects. Acta. Phys. Sin. 2019, 68, 144401.

35. Wang, D.; Chen, R.; Zhu, X.; et al. Synergetic photo-thermo catalytic hydrogen production by carbon materials. J. Phys. Chem. Lett. 2022, 13, 1602-8.

36. Zhang, Y.; Wang, J.; Zhang, G.; et al. Combined steam and CO2 reforming of methane over Co–Ce/AC-N catalyst: effect of preparation methods on catalyst activity and stability. Int. J. Hydrogen. Energy. 2022, 47, 2914-25.

37. Zhou, D.; Huang, H.; Cai, W.; Liang, W.; Xia, H.; Dang, C. Immobilization of Ni on MOF-derived CeO2 for promoting low-temperature dry reforming of methane. Fuel 2024, 363, 130998.

38. Liang, T. Y.; Senthil Raja, D.; Chin, K. C.; et al. Bimetallic metal-organic framework-derived hybrid nanostructures as high-performance catalysts for methane dry reforming. ACS. Appl. Mater. Interfaces. 2020, 12, 15183-93.

39. Alli, R. D.; Zhou, R.; Mohamedali, M.; Mahinpey, N. Effect of thermal treatment conditions on the stability of MOF-derived Ni/CeO2 catalyst for dry reforming of methane. Chem. Eng. J. 2023, 466, 143242.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/