REFERENCES
1. Jiao, K.; Xuan, J.; Du, Q.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361-9.
2. Yasin, G.; Kumar, A.; Ajmal, S.; et al. Advances and perspectives on heteronuclear dual-atomic catalysts for prevailing the linear scaling relationship in electrocatalytic CO2 reduction. Coord. Chem. Rev. 2024, 501, 215589.
3. Chen, Y.; Mao, J.; Zhou, H.; et al. Coordination shell dependent activity of CuCo diatomic catalysts for oxygen reduction, oxygen evolution, and hydrogen evolution reaction. Adv. Funct. Materials. 2024, 34, 2311664.
4. Zhuang, J.; Wang, D. Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today. Catal. 2023, 2, 100009.
5. Pei, S.; Wang, S.; Lu, Y.; Li, X.; Wang, B. Application of metal-based catalysts for Fenton reaction: from homogeneous to heterogeneous, from nanocrystals to single atom. Nano. Res. 2024, 17, 9446-71.
6. Li, X.; Duan, M.; Ou, P. High-throughput screening of single-atom catalysts confined in monolayer black phosphorus for efficient nitrogen reduction reaction. Nano. Res. 2024, 17, 2360-7.
7. Yu, J.; Wang, J.; Ma, Y.; et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Materials. 2021, 31, 2102151.
8. Sun, R. M.; Zhang, L.; Feng, J. J.; Fang, K. M.; Wang, A. J.
9. Tan, X.; Yu, C.; Ren, Y.; Cui, S.; Li, W.; Qiu, J. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy. Environ. Sci. 2021, 14, 765-80.
10. Shu, X.; Yang, M.; Liu, M.; Pan, W.; Zhang, J. The regulation of coordination structure between cobalt and nitrogen on graphene for efficient bifunctional electrocatalysis in Zn-air batteries. J. Energy. Chem. 2022, 68, 213-21.
11. Lai, W.; Qiao, Y.; Zhang, J.; Lin, Z.; Huang, H. Design strategies for markedly enhancing energy efficiency in the electrocatalytic CO2 reduction reaction. Energy. Environ. Sci. 2022, 15, 3603-29.
12. Yang, C. L.; Wang, L. N.; Yin, P.; et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459-64.
13. Jin, S.; Hao, Z.; Zhang, K.; Yan, Z.; Chen, J. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization. Angew. Chem. Int. Ed. Engl. 2021, 60, 20627-48.
14. Guo, B.; Wang, Z.; Chen, J.; et al. Cryo-EM revealing the origin of excessive capacity of the Se cathode in sulfide-based all-solid-state Li-Se batteries. ACS. Nano. 2022, 16, 17414-23.
15. Zhang, W.; Liu, D.; Liu, T.; et al. Coordinately unsaturated nickel single atom electrocatalyst for efficient CO2 conversion. Nano. Res. 2023, 16, 10873-80.
16. Chen, Y.; Jiang, B.; Hao, H.; et al. Atomic-level regulation of cobalt single-atom nanozymes: engineering high-efficiency catalase mimics. Angew. Chem. Int. Ed. Engl. 2023, 62, e202301879.
17. Liu, G.; Liu, S.; Lai, C.; et al. Strategies for enhancing the photocatalytic and electrocatalytic efficiency of covalent triazine frameworks for CO2 reduction. Small 2024, 20, e2307853.
18. Lv, Q.; Zhu, Z.; Zhao, S.; et al. Semiconducting metal-organic polymer nanosheets for a photoinvolved Li-O2 battery under visible light. J. Am. Chem. Soc. 2021, 143, 1941-7.
19. Sun, Y.; Jiang, Y.; Wei, H.; et al. Nano-enabled strategies for greenhouse gases emission mitigation: a comprehensive review. Nano. Today. 2024, 57, 102378.
20. Liu, Y.; Cai, J.; Zhou, J.; et al. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li-O2 batteries. eScience 2022, 2, 389-98.
21. Guo, L.; Zhou, J.; Liu, F.; et al. Electronic structure design of transition metal-based catalysts for electrochemical carbon dioxide reduction. ACS. Nano. 2024, 18, 9823-51.
22. Gan, T.; Wang, D. Atomically dispersed materials: ideal catalysts in atomic era. Nano. Res. 2024, 17, 18-38.
23. Zhang, T.; Zhang, L.; Hou, Y. MXenes: synthesis strategies and lithium-sulfur battery applications. eScience 2022, 2, 164-82.
24. Jiang, M.; Wang, H.; Zhu, M.; et al. Review on strategies for improving the added value and expanding the scope of CO2 electroreduction products. Chem. Soc. Rev. 2024, 53, 5149-89.
25. Hu, P.; Xiao, F.; Wu, Y.; et al. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem. Eng. J. 2022, 443, 136257.
26. Wang, F.; Lu, Z.; Guo, H.; Hao, G.; Jiang, W.; Liu, G. Copper-based catalysts for CO2 electroreduction to C2/2+ products: advance and perspective. Coord. Chem. Rev. 2024, 515, 215962.
27. Li, H.; Yan, G.; Zhao, H.; Howlett, P. C.; Wang, X.; Fang, J. Earthworm-inspired Co/Co3O4/CoF2@NSC nanofibrous electrocatalyst with confined channels for enhanced ORR/OER performance. Adv. Mater. 2024, 36, e2311272.
28. Geng, M.; Han, D.; Huang, Z.; et al. A stable anode-free Na-S full cell at room temperature. Energy. Storage. Mater. 2022, 52, 230-7.
29. Yang, G.; Zhu, J.; Yuan, P.; et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.
30. Xiao, F.; Yang, X.; Yao, T.; Wang, H.; Rogach, A. L. Encapsulation of selenium in MOF-derived N,O-codoped porous flower-like carbon host for Na-Se batteries. Chem. Eng. J. 2022, 430, 132737.
31. Zhu, P.; Xiong, X.; Wang, D.; Li, Y. Advances and regulation strategies of the active moiety in dual-atom site catalysts for efficient electrocatalysis. Adv. Energy. Mater. 2023, 13, 2300884.
32. Li, X. Y.; Feng, S.; Zhao, C. X.; et al. Regulating lithium salt to inhibit surface gelation on an electrocatalyst for high-energy-density lithium-sulfur batteries. J. Am. Chem. Soc. 2022, 144, 14638-46.
33. Song, Z.; Zhang, L.; Doyle-davis, K.; Fu, X.; Luo, J.; Sun, X. Recent advances in MOF-derived single atom catalysts for electrochemical applications. Adv. Energy. Mater. 2020, 10, 2001561.
34. Jiang, H.; Gu, J.; Zheng, X.; et al. Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy. Environ. Sci. 2019, 12, 322-33.
35. Dai, T. Y.; Wang, T. H.; Wen, Z.; Jiang, Q. Recent progress on computation-guided catalyst design for highly efficient nitrogen reduction reaction. Adv. Funct. Materials. 2024, 34, 2400773.
36. Xu, J.; Ouyang, R.; Chen, N.; Wan, X. Financing constraints, risk of stock price crash and impact of new crown pneumonia. BCP. Bus. Manag. 2021, 13, 233-41.
37. Han, J.; Tan, H.; Guo, K.; et al. The “pull effect” of a hanging ZnII on improving the four-electron oxygen reduction selectivity with Co porphyrin. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409793.
38. Li, W.; Lu, Y.; Tang, Y.; Sun, H. Carbon-carbon triple bond-containing materials for photo(electro)catalytic solar hydrogen production. Carbon. Energ. 2024, 6, e527.
39. Wang, Y.; Ma, F.; Zhang, G.; et al. Precise synthesis of dual atom sites for electrocatalysis. Nano. Res. 2024, 17, 9397-427.
40. Luo, E.; Yang, T.; Liang, J.; et al. Selective oxygen electroreduction to hydrogen peroxide in acidic media: the superiority of single-atom catalysts. Nano. Res. 2024, 17, 4668-81.
41. Zhang, H.; Cheng, W.; Luan, D.; Lou, X. W. Atomically dispersed reactive centers for electrocatalytic CO2 reduction and water splitting. Angew. Chem. Int. Ed. Engl. 2021, 60, 13177-96.
42. Feng, J.; Lv, F.; Zhang, W.; et al. Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis. Adv. Mater. 2017, 29, 1703798.
43. Huang, B.; Wu, Z.; Zhou, H.; et al. Recent advances in single-atom catalysts for advanced oxidation processes in water purification. J. Hazard. Mater. 2021, 412, 125253.
44. Li, S.; Guan, A.; Yang, C.; et al. Dual-atomic Cu sites for electrocatalytic CO reduction to C2+ products. ACS. Materials. Lett. 2021, 3, 1729-37.
45. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-88.
46. Wang, Y.; Cui, X.; Zhang, J.; et al. Advances of atomically dispersed catalysts from single-atom to clusters in energy storage and conversion applications. Prog. Mater. Sci. 2022, 128, 100964.
47. Kang, J.; Xue, Y.; Yang, J.; et al. Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc. 2022, 144, 8969-76.
48. Ballesteros-soberanas, J.; Martín, N.; Bacic, M.; et al. A MOF-supported Pd1-Au1 dimer catalyses the semihydrogenation reaction of acetylene in ethylene with a nearly barrierless activation energy. Nat. Catal. 2024, 7, 452-63.
49. Liu, L.; Wang, S.; Huang, H.; Zhang, Y.; Ma, T. Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction. Nano. Energy. 2020, 75, 104959.
50. Wang, W.; Chen, D.; Li, F.; Xiao, X.; Xu, Q. Metal-organic-framework-based materials as platforms for energy applications. Chem 2024, 10, 86-133.
51. Li, Y.; Peng, C. K.; Hu, H.; et al. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat. Commun. 2022, 13, 1143.
52. Chang, H.; Shi, L. N.; Chen, Y. H.; Wang, P. F.; Yi, T. F. Advanced MOF-derived carbon-based non-noble metal oxygen electrocatalyst for next-generation rechargeable Zn-air batteries. Coord. Chem. Rev. 2022, 473, 214839.
53. Qu, J.; Cao, X.; Gao, L.; et al. Electrochemical carbon dioxide reduction to ethylene: from mechanistic understanding to catalyst surface engineering. Nanomicro. Lett. 2023, 15, 178.
54. Yan, Y.; Cheng, H.; Qu, Z.; et al. Recent progress on the synthesis and oxygen reduction applications of Fe-based single-atom and double-atom catalysts. J. Mater. Chem. A. 2021, 9, 19489-507.
55. Lu, C.; Fang, R.; Chen, X. Single-atom catalytic materials for advanced battery systems. Adv. Mater. 2020, 32, e1906548.
56. Lei, Y.; Wang, Z.; Bao, A.; et al. Recent advances on electrocatalytic CO2 reduction to resources: target products, reaction pathways and typical catalysts. Chem. Eng. J. 2023, 453, 139663.
57. Han, B.; Guo, Y.; Huang, Y.; et al. Strong metal-support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. Engl. 2020, 59, 11824-9.
58. Yang, D.; Wang, J.; Wang, Q.; et al. Electrocatalytic CO2 reduction over atomically precise metal nanoclusters protected by organic ligands. ACS. Nano. 2022, 16, 15681-704.
59. Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900-55.
60. Hao, L.; Guo, C.; Hu, Z.; et al. Single-atom catalysts based on Fenton-like/peroxymonosulfate system for water purification: design and synthesis principle, performance regulation and catalytic mechanism. Nanoscale 2022, 14, 13861-89.
61. Yang, J.; Chen, Z.; Zhang, L.; Zhang, Q. Covalent organic frameworks for photocatalytic reduction of carbon dioxide: a review. ACS. Nano. 2024, 18, 21804-35.
62. Tian, L. C.; Hu, J. N.; Meng, Y.; Liang, J. X.; Zhu, C.; Li, J. Ultrastable nickel single-atom catalysts with high activity and selectivity for electrocatalytic CO2 methanation. Nano. Res. 2023, 16, 8987-95.
63. Yun, R.; Xu, R.; Shi, C.; et al. Post-modification of MOF to fabricate single-atom dispersed hollow nanocages catalysts for enhancing CO2 conversion. Nano. Res. 2023, 16, 8970-6.
64. Dai, F.; Zhang, M.; Han, J.; et al. Bifunctional core-shell co-catalyst for boosting photocatalytic CO2 reduction to CH4. Nano. Res. 2024, 17, 1259-66.
65. Fan, Y.; Yi, Y.; Rong, H.; Zhang, J. Silicon dioxide-protection boosting the peroxidase-like activity of Fe single-atom catalyst for combining chemo-photothermal therapy. Nano. Res. 2024, 17, 4924-33.
66. Hu, J.; Huang, H.; Yu, M.; Wang, S.; Li, J. Electron engineering of nickel phosphide for Niδ+ in electrochemical nitrate reduction to ammonia. Nano. Res. 2024, 17, 4864-71.
67. Chen, R.; Wang, X.; Dang, J.; et al. Shedding light on the reversible deactivation of carbon-supported single-atom catalysts in hydrogenation reaction. Nano. Res. 2024, 17, 4807-14.
68. Pedersen, A.; Barrio, J.; Li, A.; et al. Dual-metal atom electrocatalysts: theory, synthesis, characterization, and applications. Adv. Energy. Mater. 2022, 12, 2102715.
69. Chen, Z.; Li, N.; Zhang, Q. Covalent organic frameworks as promising platforms for efficient electrochemical reduction of carbon dioxide: a review. Small. Struct. 2024, 5, 2300495.
70. Gao, C.; Low, J.; Long, R.; Kong, T.; Zhu, J.; Xiong, Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 2020, 120, 12175-216.
71. Li, W. H.; Yang, J.; Wang, D. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem. Int. Ed. Engl. 2022, 61, e202213318.
72. Sun, M.; Wong, H. H.; Wu, T.; et al. Double-dependence correlations in graphdiyne-supported atomic catalysts to promote CO2RR toward the generation of C2 products. Adv. Energy. Mater. 2023, 13, 2203858.
73. Yu, X.; Ng, S. F.; Putri, L. K.; Tan, L. L.; Mohamed, A. R.; Ong, W. J. Point-defect engineering: leveraging imperfections in graphitic carbon nitride (g-C3N4) photocatalysts toward artificial photosynthesis. Small 2021, 17, e2006851.
74. Xu, D.; Li, K.; Jia, B.; et al. Electrocatalytic CO2 reduction towards industrial applications. Carbon. Energ. 2023, 5, e230.
75. Sun, B.; Xu, M.; Li, X.; et al. Unlocking single-atom catalysts via amorphous substrates. Nano. Res. 2024, 17, 3533-46.
76. Li, R.; Yan, S.; Xue, T.; et al. A MOF/poly(thioctic acid) composite for enhanced gold extraction from water matrices. Nano. Res. 2024, 17, 382-9.
77. Liu, K.; Wu, J.; Li, Q.; et al. Molten metal-organic complex to synthesize versatile ultrathin non-layered oxides. Nano. Res. 2024, 17, 3147-55.
78. Li, X.; Cao, C.; Hung, S.; et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem 2020, 6, 3440-54.
79. Zou, L.; Wei, Y. S.; Hou, C. C.; Li, C.; Xu, Q. Single-atom catalysts derived from metal-organic frameworks for electrochemical applications. Small 2021, 17, e2004809.
80. Roth-Zawadzki, A. M.; Nielsen, A. J.; Tankard, R. E.; Kibsgaard, J. Dual and triple atom electrocatalysts for energy conversion (CO2RR, NRR, ORR, OER, and HER): synthesis, characterization, and activity evaluation. ACS. Catal. 2024, 14, 1121-45.
81. Ma, X.; Liu, H.; Yang, W.; Mao, G.; Zheng, L.; Jiang, H. L. Modulating coordination environment of single-atom catalysts and their proximity to photosensitive units for boosting MOF photocatalysis. J. Am. Chem. Soc. 2021, 143, 12220-9.
82. Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775-86.
83. Huang, Y.; Chen, Y.; Xu, M.; et al. Catalysts by pyrolysis: transforming metal-organic frameworks (MOFs) precursors into metal-nitrogen-carbon (M-N-C) materials. Mater. Today. 2023, 69, 66-78.
84. Yang, P. P.; Gao, M. R. Enrichment of reactants and intermediates for electrocatalytic CO2 reduction. Chem. Soc. Rev. 2023, 52, 4343-80.
85. Li, X.; Zhang, F.; Han, X.; et al. Single atom Pd1/ZIF-8 catalyst via partial ligand exchange. Nano. Res. 2023, 16, 8003-11.
86. Zhang, Y. X.; Zhang, S.; Huang, H.; et al. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 2023, 145, 4819-27.
87. Tian, S.; Fu, Q.; Chen, W.; et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 2018, 9, 2353.
88. Tang, T.; Wang, Z.; Guan, J. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis. Coord. Chem. Rev. 2023, 492, 215288.
89. Zhao, Q. P.; Shi, W. X.; Zhang, J.; et al. Photo-induced synthesis of heteronuclear dual-atom catalysts. Nat. Synth. 2024, 3, 497-506.
90. Mo, Q.; Zhang, L.; Li, S.; Song, H.; Fan, Y.; Su, C. Y. Engineering single-atom sites into pore-confined nanospaces of porphyrinic metal-organic frameworks for the highly efficient photocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2022, 144, 22747-58.
91. Liu, X.; Zhang, L.; Wang, J. Design strategies for MOF-derived porous functional materials: preserving surfaces and nurturing pores. J. Materiomics. 2021, 7, 440-59.
92. Li, X.; Wang, B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano. Res. 2023, 16, 10326-41.
93. Wang, Z.; Cheng, Y.; Wang, S.; et al. Promoting polysulfide conversions via cobalt single-atom catalyst for fast and durable lithium-sulfur batteries. Nano. Res. 2023, 16, 9335-43.
94. Johnson, D.; Pranada, E.; Yoo, R.; Uwadiunor, E.; Ngozichukwu, B.; Djire, A. Review and perspective on transition metal electrocatalysts toward carbon-neutral energy. Energy. Fuels. 2023, 37, 1545-76.
95. Hwang, C. K.; Kim, S.; Yoon, K. R.; et al. Arc plasma-deposited Co single-atom catalysts supported on an aligned carbon nanofiber for hydrogen peroxide electrosynthesis and an electro-Fenton process. Carbon. Energ. 2024, 6, e582.
96. Guo, B.; Wang, Z.; Zheng, L.; Mo, G.; Zhou, H.; Luo, D. Confined cobalt single-atom catalysts with strong electronic metal-support interactions based on a biomimetic self-assembly strategy. Carbon. Energ. 2024, 6, e554.
97. Hou, C.; Wang, H.; Li, C.; Xu, Q. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy. Environ. Sci. 2020, 13, 1658-93.
98. Yang, J.; Zhu, C.; Wang, D. A simple organo-electrocatalysis system for the chlor-related industry. Angew. Chem. Int. Ed. Engl. 2024, 63, e202406883.
99. Wang, X. Y.; Pan, Y. Z.; Yang, J.; et al. Single-atom iron catalyst as an advanced redox mediator for anodic oxidation of organic electrosynthesis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202404295.
100. Wang, L.; Li, J.; Ji, S.; Xiong, Y.; Wang, D. Microenvironment engineering of covalent organic framework based single/dual-atom catalysts toward sustainable energy conversion and storage. Energy. Environ. Sci. 2024, 17, 8482-528.
101. Qiu, W.; Qin, S.; Li, Y.; et al. Overcoming electrostatic interaction via pulsed electroreduction for boosting the electrocatalytic urea synthesis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202402684.
102. Lv, L.; Tan, H.; Kong, Y.; et al. Breaking the scaling relationship in C-N coupling via the doping effects for efficient urea electrosynthesis. Angew. Chem. Int. Ed. Engl. 2024, 63, e202401943.
103. Zuo, Q.; Cui, R.; Wang, L.; et al. High-loading single cobalt atoms on ultrathin MOF nanosheets for efficient photocatalytic CO2 reduction. Sci. China. Chem. 2023, 66, 570-7.
104. Xie, M.; Wang, J.; Du, X. L.; et al. Metal-organic framework derived single-atom catalysts for electrochemical CO2 reduction. RSC. Adv. 2022, 12, 32518-25.
105. Bao, C.; Huo, Y. F.; Li, Y. T.; Yang, S. Q.; Li, W.; Hu, T. L. Anchoring Cu on Zirconium-oxo nodes in a pore-confined metal-organic framework for CO2 hydrogenation to methanol. Chem. Eng. J. 2025, 503, 158610.
106. Huang, J. M.; Zhang, X. D.; Huang, J. Y.; Zheng, D. S.; Xu, M.; Gu, Z. Y. MOF-based materials for electrochemical reduction of carbon dioxide. Coord. Chem. Rev. 2023, 494, 215333.
107. Uekert, T.; Pichler, C. M.; Schubert, T.; Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 2021, 4, 383-91.
108. Ma, F.; Zhang, P.; Zheng, X.; et al. Steering the site distance of atomic Cu-Cu pairs by first-shell halogen coordination boosts CO2-to-C2 selectivity. Angew. Chem. Int. Ed. Engl. 2024, 63, e202412785.
109. He, Y.; Wang, Z.; Wang, H.; et al. Metal-organic framework-derived nanomaterials in environment related fields: fundamentals, properties and applications. Coord. Chem. Rev. 2021, 429, 213618.
110. Wang, Y.; Liu, Y.; Liu, W.; et al. Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO2 reduction. Energy. Environ. Sci. 2020, 13, 4609-24.
111. Zhong, G.; Zou, L.; Chi, X.; et al. Atomically dispersed Mn-Nx catalysts derived from Mn-hexamine coordination frameworks for oxygen reduction reaction. Carbon. Energ. 2024, 6, e484.
112. Peng, Y.; Xu, J.; Xu, J.; et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid. Interface. Sci. 2022, 307, 102732.
113. Zhou, Y.; Sheng, L.; Chen, L.; Zhao, W.; Zhang, W.; Yang, J. Metal and ligand modification modulates the electrocatalytic HER, OER, and ORR activity of 2D conductive metal-organic frameworks. Nano. Res. 2024, 17, 7984-90.
114. Fu, W.; Yun, Y.; Sheng, H.; et al. Design of bifunctional single-atom catalysts NiSA/ZIF-300 for CO2 conversion by ligand regulation strategy. Nano. Res. 2024, 17, 3827-34.
115. Mushtaq, N.; Ahmad, A.; Wang, X.; Khan, U.; Gao, J. MOFs/COFs hybrids as next-generation materials for electrocatalytic CO2 reduction reaction. Chem. Eng. J. 2024, 486, 150098.
116. Li, J.; Du, Z.; Xiong, L.; Fu, L.; Bo, W. Supramolecular isomerism in two nickel(II) coordination polymers constructed with the flexible 2-carboxyphenoxyacetate linker: syntheses, structure analyses and magnetic properties. J. Solid. State. Chem. 2021, 293, 121799.
117. Peng, Y.; Sanati, S.; Morsali, A.; García, H. Metal-organic frameworks as electrocatalysts. Angew. Chem. Int. Ed. Engl. 2023, 62, e202214707.
118. Chen, S.; Li, W. H.; Jiang, W.; et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114450.
119. Wang, J.; Sun, K.; Wang, D.; et al. Precise regulation of the coordination environment of single Co(II) sites in a metal-organic framework for boosting CO2 photoreduction. ACS. Catal. 2023, 13, 8760-9.
120. Dong, Y. L.; Jiang, Y.; Ni, S.; et al. Ligand defect-induced active sites in Ni-MOF-74 for efficient photocatalytic CO2 reduction to CO. Small 2024, 20, 2308005.
121. Adegoke, K. A.; Maxakato, N. W. Porous metal-organic framework (MOF)-based and MOF-derived electrocatalytic materials for energy conversion. Mater. Today. Energy. 2021, 21, 100816.
122. Woldu, A. R.; Huang, Z.; Zhao, P.; Hu, L.; Astruc, D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord. Chem. Rev. 2022, 454, 214340.
123. Wang, L.; Luo, Z.; Feng, S.; et al. Synthesis of MOF-derived hybrids for efficient electrocatalytic reduction of CO2 to syngas. Catal. Lett. 2023, 153, 1527-35.
124. Chen, X.; Zhang, M.; Zhu, J.; Wang, J.; Jiao, Z.; Li, Y. Boosting electrochemical performance of Li-S batteries by cerium-based MOFs coated with polypyrrole. J. Alloy. Compd. 2022, 901, 163649.
125. Li, R.; Ban, T.; Zhao, D.; et al. Defect engineering and Ni promoter synergistically accelerating electron transfer to Ru0 sites in UiO-66(Ce) for dicyclopentadiene hydrogenation under mild condition. Nano. Res. 2024, 17, 9550-63.
126. Tang, B.; Ji, Q.; Zhang, X.; et al. Symmetry breaking of FeN4 moiety via edge defects for acidic oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2025, 64, e202424135.
127. Deng, M.; Mukherjee, S.; Liang, Y. J.; Fang, X. D.; Zhu, A. X.; Zaworotko, M. J. Water vapour induced reversible switching between a 1-D coordination polymer and a 0-D aqua complex. Chem. Commun. 2022, 58, 8218-21.
128. Xiao, L.; Cheng, C.; Li, Z.; et al. Dynamically modulated synthesis of hollow metal-organic frameworks for selective hydrogenation reactions. Nano. Res. 2023, 16, 11334-41.
129. Sun, J. K.; Pan, Y. W.; Xu, M. Q.; et al. Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano. Res. 2024, 17, 1086-93.
130. Xu, H.; Wei, X.; Zeng, H.; et al. Recent progress of two-dimensional metal-organic-frameworks: from synthesis to electrocatalytic oxygen evolution. Nano. Res. 2023, 16, 8614-37.
131. Zhu, C.; Yang, J.; Zhang, J.; et al. Single-atom materials: the application in energy conversion. Interdiscip. Mater. 2024, 3, 74-86.
132. Huang, L.; Mo, S.; Zhao, X.; et al. Constructing Co and Zn atomic pairs in core-shell Co3S4/NC@ZnS/NC derived from MOF-on-MOF nanostructures for enhanced photocatalytic CO2 reduction to C2H4. Appl. Catal. B-Environ. Energy. 2024, 352, 124019.
133. Shan, L.; Ma, Y.; Xu, S.; et al. Efficient electrochemical reduction of nitrate to ammonia over metal-organic framework single-atom catalysts. Commun. Mater. 2024, 5, 104.
134. Wen, M.; Sun, N.; Jiao, L.; Zang, S. Q.; Jiang, H. L. Microwave-assisted rapid synthesis of MOF-based single-atom Ni catalyst for CO2 electroreduction at ampere-level current. Angew. Chem. Int. Ed. Engl. 2024, 63, e202318338.
135. Chen, S.; Zhu, Z.; Li, G.; et al. Ionic liquid-assisted synthesis of higher loaded Ni/Fe dual-atom catalysts in N, F, B codoped carbon matrix for accelerated sulfur reduction reaction. Small 2024, 20, 2406731.
136. Srinivas, K.; Yu, H.; Chen, Z.; et al. Densely accessible Fe/Co-Nx dual-atom site coupled core-shell Co3Fe7@C as an efficient bifunctional oxygen electrocatalyst for rechargeable zinc-air batteries. J. Mater. Chem. A. 2024, 12, 16863-76.
137. Ren, F.; Xu, J.; Feng, L. An effective bimetallic oxide catalyst of RuO2-Co3O4 for alkaline overall water splitting. Nano. Res. 2024, 17, 3785-93.
138. Chebrolu, V. T.; Jang, D.; Rani, G. M.; Lim, C.; Yong, K.; Kim, W. B. Overview of emerging catalytic materials for electrochemical green ammonia synthesis and process. Carbon. Energ. 2023, 5, e361.
139. Hu, J.; Xu, Q.; Wang, X.; et al. Charge-transfer-regulated bimetal ferrocene-based organic frameworks for promoting electrocatalytic oxygen evolution. Carbon. Energ. 2023, 5, e315.
140. Liu, S.; Liu, M.; Li, X.; et al. Metal organic polymers with dual catalytic sites for oxygen reduction and oxygen evolution reactions. Carbon. Energ. 2023, 5, e303.
141. Wang, M.; Gao, P.; Li, D.; et al. Cu/Fe dual atoms catalysts derived from Cu-MOF for Zn-air batteries. Mater. Today. Energy. 2022, 28, 101086.
142. Wang, L.; Wu, J.; Wang, S.; Liu, H.; Wang, Y.; Wang, D. The reformation of catalyst: from a trial-and-error synthesis to rational design. Nano. Res. 2024, 17, 3261-301.
143. Zheng, F.; Lin, T.; Wang, K.; Wang, Y.; Li, G. Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis. Nano. Res. 2023, 16, 12919-35.
144. Cheng, C. C.; Lin, T. Y.; Ting, Y. C.; Lin, S. H.; Choi, Y.; Lu, S. Y. Metal-organic frameworks stabilized Mo and W binary single-atom catalysts as high performance bifunctional electrocatalysts for water electrolysis. Nano. Energy. 2023, 112, 108450.
145. Tang, M.; Shen, J.; Zhang, F.; et al. Upcycling of polyamide wastes to tertiary amines using Mo single atoms and Rh nanoparticles. Angew. Chem. Int. Ed. Engl. 2025, 64, e202416436.
146. Guan, S.; Yuan, Z.; Zhao, S.; et al. Efficient hydrogen generation from ammonia borane hydrolysis on a tandem ruthenium-platinum-titanium catalyst. Angew. Chem. Int. Ed. Engl. 2024, 63, e202408193.
147. Pei, J.; Yang, L.; Lin, J.; et al. Integrating host design and tailored electronic effects of yolk-shell Zn-Mn diatomic sites for efficient CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316123.
148. Liu, M.; Li, N.; Cao, S.; et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 2022, 34, 2107421.
149. Yang, B.; Huang, J.; Tong, J.; et al. Microwave synthesis of Fe-Cu diatomic active center MOF: synergistic cyclic catalysis of persulfate for degrading norfloxacin. Environ. Sci: Nano. 2023, 10, 2778-89.
150. Leng, K.; Zhang, J.; Wang, Y.; et al. Interfacial cladding engineering suppresses atomic thermal migration to fabricate well-defined dual-atom electrocatalysts. Adv. Funct. Materials. 2022, 32, 2205637.
151. Zhang, L.; Feng, J.; Liu, S.; et al. Atomically dispersed Ni-Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 2023, 35, 2209590.
152. Lv, Z.; Zhang, H.; Liu, C.; Li, S.; Song, J.; He, J. Oxygen-bridged cobalt-chromium atomic pair in MOF-derived cobalt phosphide networks as efficient active sites enabling synergistic electrocatalytic water splitting in alkaline media. Adv. Sci. 2024, 11, e2306678.
153. Li, Y.; Niu, S.; Liu, P.; et al. Ruthenium Nanoclusters and single atoms on α-MoC/N-doped carbon achieves low-input/input-free hydrogen evolution via decoupled/coupled hydrazine oxidation. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316755.
154. Han, A.; Sun, W.; Wan, X.; et al. Construction of Co4 atomic clusters to enable Fe-N4 motifs with highly active and durable oxygen reduction performance. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303185.
155. Yang, X.; Qin, J.; Dai, Z.; et al. MOF-derived Fe based catalysts for efficiently advanced oxidation processes: from single atoms to diatomic and nanoparticles. Prog. Nat. Sci-Mater. 2023, 33, 534-43.
156. Zhao, J.; Zhang, Y.; Zhuang, Z.; et al. Tailoring d-p orbital hybridization to decipher the essential effects of heteroatom substitution on redox kinetics. Angew. Chem. Int. Ed. Engl. 2024, 63, e202404968.
157. Mu, X. Q.; Liu, S. L.; Zhang, M. Y.; et al. Symmetry-broken Ru nanoparticles with parasitic Ru-Co dual-single atoms overcome the volmer step of alkaline hydrogen oxidation. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319618.
158. Wang, Y.; Park, B. J.; Paidi, V. K.; et al. Precisely constructing orbital coupling-modulated dual-atom fe pair sites for synergistic CO2 electroreduction. ACS. Energy. Lett. 2022, 7, 640-9.
159. Zhao, X.; Zhao, K.; Liu, Y.; et al. Highly efficient electrochemical CO2 reduction on a precise homonuclear diatomic Fe-Fe catalyst. ACS. Catal. 2022, 12, 11412-20.
160. Li, Q.; Zhang, P.; Li, H.; et al. Maximizing hydrogen evolution via Co-Ni dual atoms and nanoclusters on hierarchically ordered porous carbon framework. Sci. China. Mater. 2024, 67, 3197-205.
161. Ning, S.; Ou, H.; Li, Y.; et al. Co0-Coδ+ interface double-site-mediated C-C coupling for the photothermal conversion of CO2 into light olefins. Angew. Chem. Int. Ed. Engl. 2023, 62, e202302253.
162. Liu, M.; Liu, S.; Xu, Q.; et al. Dual atomic catalysts from COF-derived carbon for CO2RR by suppressing HER through synergistic effects. Carbon. Energy. 2023, 5, e300.
163. Jiao, L.; Zhu, J.; Zhang, Y.; et al. Non-bonding interaction of neighboring Fe and Ni single-atom pairs on MOF-derived N-doped carbon for enhanced CO2 electroreduction. J. Am. Chem. Soc. 2021, 143, 19417-24.
164. Wang, B.; Huang, J.; Wu, H.; Yan, X.; Liao, Y.; Li, H. Synergy of heterogeneous Co/Ni dual atoms enabling selective C–O bond scission of lignin coupling with in-situ N-functionalization. J. Energy. Chem. 2024, 92, 16-25.
165. Xia, J.; Xu, J.; Yu, B.; et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem. Int. Ed. Engl. 2024, 63, e202412740.
166. Qin, Y.; Yu, K.; Wang, G.; et al. Adjacent-ligand tuning of atomically precise Cu-Pd sites enables efficient methanol electrooxidation with a CO-free pathway. Angew. Chem. Int. Ed. Engl. 2025, 64, e202420817.
167. Pang, M.; Yang, M.; Zhang, H.; et al. Synthesis techniques, mechanism, and prospects of high-loading single-atom catalysts for oxygen reduction reactions. Nano. Res. 2024, 17, 9371-96.
168. Gao, Y.; Yang, C.; Sun, F.; et al. Ligand-tuning metallic sites in molecular complexes for efficient water oxidation. Angew. Chem. Int. Ed. Engl. 2025, 64, e202415755.
169. Hu, Y.; Chao, T.; Li, Y.; et al. Cooperative Ni(Co)-Ru-P sites activate dehydrogenation for hydrazine oxidation assisting self-powered H2 production. Angew. Chem. Int. Ed. Engl. 2023, 62, e202308800.
170. Zhang, Q.; Liu, D.; Zhang, Y.; et al. Insight into coupled Ni-Co dual-metal atom catalysts for efficient synergistic electrochemical CO2 reduction. J. Energy. Chem. 2023, 87, 509-17.
171. Zhu, J.; Xiao, M.; Ren, D.; et al. Quasi-covalently coupled Ni-Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 2022, 144, 9661-71.
172. Ahmad, M.; Chen, J.; Liu, J.; et al. Metal-organic framework-based single-atom electro-/photocatalysts: synthesis, energy applications, and opportunities. Carbon. Energy. 2024, 6, e382.
173. Song, Z.; Li, J.; Zhang, Q.; et al. Progress and perspective of single-atom catalysts for membrane electrode assembly of fuel cells. Carbon. Energy. 2023, 5, e342.
174. Yang, J.; Zhu, C.; Li, W.; Zheng, X.; Wang, D. Organocatalyst supported by a single-atom support accelerates both electrodes used in the chlor-alkali industry via modification of non-covalent interactions. Angew. Chem. Int. Ed. Engl. 2024, 63, e202314382.
175. Hu, Y.; Li, Z.; Li, B.; Yu, C. Recent progress of diatomic catalysts: general design fundamentals and diversified catalytic applications. Small 2022, 18, 2203589.
176. Tang, H. T.; Zhou, H. Y.; Pan, Y. M.; et al. Single-atom manganese-catalyzed oxygen evolution drives the electrochemical oxidation of silane to silanol. Angew. Chem. Int. Ed. Engl. 2024, 63, e202315032.
177. Wang, M.; Yao, Y.; Yang, F.; et al. Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasi-solid-state Li-O2 battery. Carbon. Energy. 2023, 5, e334.
178. Xu, C.; Han, W.; Xue, W.; et al. An in-situ TEM characterization of electron beam induced dislocation motion in a single-crystalline gold thin film. Mater. Charact. 2022, 184, 111697.
179. Tao, Y.; Guan, J.; Zhang, J.; et al. Ruthenium single atomic sites surrounding the support pit with exceptional photocatalytic activity. Angew. Chem. Int. Ed. Engl. 2024, 63, e202400625.
180. Liu, Y.; Zhuang, Z.; Liu, Y.; et al. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411396.
181. Sun, B.; Zhang, S.; Yang, H.; et al. Revealing the active sites in atomically dispersed multi-metal-nitrogen-carbon catalysts. Adv. Funct. Materials. 2024, 34, 2315862.
182. Wei, J.; Xiao, K.; Chen, Y.; Guo, X. P.; Huang, B.; Liu, Z. Q.
183. Sun, Z.; Li, C.; Wei, Z.; et al. Sulfur-bridged asymmetric CuNi bimetallic atom sites for CO2 reduction with high efficiency. Adv. Mater. 2024, 36, 2404665.
184. Su, Y.; Yuan, G.; Hu, J.; et al. Recent progress in strategies for preparation of metal-organic frameworks and their hybrids with different dimensions. Chem. Synth. 2023, 3, 1.
185. Abdel-mageed, A. M.; Rungtaweevoranit, B.; Impeng, S.; et al. Unveiling the CO oxidation mechanism over a molecularly defined copper single-atom catalyst supported on a metal-organic framework. Angew. Chem. Int. Ed. Engl. 2023, 62, e202301920.
186. Wang, X.; Guo, Y.; Cui, X.; et al. Graphene oxide membranes using MOF@Chitosan core-shell nanoparticles as dual modulators for dye separation. Chem. Synth. 2024, 4, 27.
187. Wang, Y.; Wu, J.; Tang, S.; et al. Synergistic Fe-Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-Air battery. Angew. Chem. Int. Ed. Engl. 2023, 62, e202219191.
188. Liu, M.; Wang, X.; Cao, S.; et al. Ferredoxin-inspired design of S-synergized Fe-Fe dual-metal center catalysts for enhanced electrocatalytic oxygen reduction reaction. Adv. Mater. 2024, 36, 2309231.
189. Sun, Z.; Zhang, H.; Cao, L.; et al. Understanding synergistic catalysis on Cu-Se dual atom sites via operando X-ray absorption spectroscopy in oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2023, 62, e202217719.
190. Zhang, Y.; Yao, Z.; Yang, Y.; et al. Breaking the scaling relations of effective CO2 electrochemical reduction in diatomic catalysts by adjusting the flow direction of intermediate structures. Chem. Sci. 2024, 15, 13160-72.
191. Liu, J.; Xu, H.; Zhu, J.; Cheng, D. Understanding the pathway switch of the oxygen reduction reaction from single- to double-/triple-atom catalysts: a dual channel for electron acceptance-backdonation. JACS. Au. 2023, 3, 3031-44.
192. Zhang, S.; Hou, M.; Zhai, Y.; et al. Dual-active-sites single-atom catalysts for advanced applications. Small 2023, 19, e2302739.
193. Huang, H.; Sun, M.; Li, S.; et al. Enhancing H2O2 electrosynthesis at industrial-relevant current in acidic media on diatomic cobalt sites. J. Am. Chem. Soc. 2024, 146, 9434-43.
194. Sun, J.; Tao, L.; Ye, C.; et al. MOF-derived Ru1Zr1/Co dual-atomic-site catalyst with promoted performance for fischer-tropsch synthesis. J. Am. Chem. Soc. 2023, 145, 7113-22.
195. Liu, Y.; Yuan, S.; Sun, C.; et al. Optimizing Fe-3d electron delocalization by asymmetric Fe-Cu diatomic configurations for efficient anion exchange membrane fuel cells. Adv. Energy. Mater. 2023, 13, 2302719.
196. Zhao, Z.; Zhu, M.; Qu, M.; et al. Relay electrocatalysis with bimetallic sites for highly efficient oxidation in multiple cascade reaction. Chem. Eng. J. 2024, 484, 149768.
197. Li, B.; Du, W.; Wu, Q.; Dai, Y.; Huang, B.; Ma, Y. Coronene-based 2D metal-organic frameworks: a new family of promising single-atom catalysts for nitrogen reduction reaction. J. Phys. Chem. C. 2021, 125, 20870-6.
198. Zhang, R.; Jiao, L.; Yang, W.; Wan, G.; Jiang, H. L. Single-atom catalysts templated by metal-organic frameworks for electrochemical nitrogen reduction. J. Mater. Chem. A. 2019, 7, 26371-7.
199. Qiao, M.; Xie, J.; Zhu, D. Computational screening of two-dimensional metal-organic frameworks as efficient single-atom catalysts for oxygen reduction reaction. Chem-Eur. J. 2023, 29, e202300686.
200. Ming, M. T.; Wang, Y. C.; Tao, W. X.; Shi, W. J.; Zhong, D. C.; Lu, T. B. Designing dual-atom cobalt catalysts anchored on amino-functionalized MOFs for efficient CO2 photoreduction. Green. Chem. 2023, 25, 6207-11.
201. Hu, S.; Gao, M. L.; Huang, J.; et al. Introducing hydrogen-bonding microenvironment in close proximity to single-atom sites for boosting photocatalytic hydrogen production. J. Am. Chem. Soc. 2024, 146, 20391-400.
202. Chen, Y.; Lin, J. Design of efficient dual-atom catalysts for energy conversion. Chem Synth 2025;5:[Accept]. Available online: https://www.oaepublish.com/pre_onlines/cs.2024.104 (accessed 9 May 2025).
203. Zhao, B.; Han, J.; Liu, B.; Zhang, S. L.; Guan, B. Hierarchical metal-organic framework nanoarchitectures for catalysis. Chem. Synth. 2024, 4, 41.
204. Cui, X.; Bai, H.; Zhang, J.; et al. A cluster-nanozyme-coenzyme system mimicking natural photosynthesis for CO2 reduction under intermittent light irradiation. Nat. Commun. 2024, 15, 9048.
205. Qiu, B.; Du, M.; Ma, Y.; Zhu, Q.; Xing, M.; Zhang, J. Integration of redox cocatalysts for artificial photosynthesis. Energy. Environ. Sci. 2021, 14, 5260-88.
206. Zhu, Q.; Xu, Q.; Du, M.; et al. Recent progress of metal sulfide photocatalysts for solar energy conversion. Adv. Mater. 2022, 34, e2202929.
207. Zhuo, L. L.; Chen, P.; Zheng, K.; et al. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem. Int. Ed. Engl. 2022, 61, e202204967.
208. Angulo-Ibáñez, A.; Goitandia, A. M.; Albo, J.; et al. Porous TiO2 thin film-based photocatalytic windows for an enhanced operation of optofluidic microreactors in CO2 conversion. iScience 2021, 24, 102654.
209. Chen, Z.; Zhang, X.; Liu, W.; et al. Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level. Energy. Environ. Sci. 2021, 14, 2349-56.
210. Cheng, H.; Wu, X.; Li, X.; et al. Construction of atomically dispersed Cu-N4 sites via engineered coordination environment for high-efficient CO2 electroreduction. Chem. Eng. J. 2021, 407, 126842.
211. Choi, S.; Jung, W. J.; Park, K.; et al. Rapid exciton migration and amplified funneling effects of multi-porphyrin arrays in a Re(I)/porphyrinic MOF hybrid for photocatalytic CO2 reduction. ACS. Appl. Mater. Interfaces. 2021, 13, 2710-22.
212. Gao, J.; Hu, Y.; Wang, Y.; et al. MOF structure engineering to synthesize Co-N-C catalyst with richer accessible active sites for enhanced oxygen reduction. Small 2021, 17, 2104684.
213. Cho, J. H.; Ma, J.; Lee, C.; et al. Crystallographically vacancy-induced MOF nanosheet as rational single-atom support for accelerating CO2 electroreduction to CO. Carbon. Energ. 2024, 6, e510.
214. Wang, G.; Wu, Y.; Li, Z.; et al. Engineering a copper single-atom electron bridge to achieve efficient photocatalytic CO2 conversion. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218460.
215. Zhang, X.; Xue, D.; Jiang, S.; et al. Rational confinement engineering of MOF-derived carbon-based electrocatalysts toward CO2 reduction and O2 reduction reactions. InfoMat 2022, 4, e12257.
216. Li, J. X.; Zhang, Y. H.; Du, Z. X.; Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorganica. Chimica. Acta. 2022, 530, 120697.
217. Zhao, Y.; Zeng, H.; Zhu, X. W.; Lu, W.; Li, D. Metal-organic frameworks as photoluminescent biosensing platforms: mechanisms and applications. Chem. Soc. Rev. 2021, 50, 4484-513.
218. Draper, B.; Yee, W. L.; Pedrana, A.; et al. Reducing liver disease-related deaths in the Asia-Pacific: the important role of decentralised and non-specialist led hepatitis C treatment for cirrhotic patients. Lancet. Reg. Health. West. Pac. 2022, 20, 100359.
219. Geng, W.; Chen, W.; Li, G.; et al. Induced CO2 electroreduction to formic acid on metal-organic frameworks via node doping. ChemSusChem 2020, 13, 4035-40.
220. Huo, J.; Cao, X.; Tian, Y.; et al. Atomically dispersed Mn atoms coordinated with N and O within an N-doped porous carbon framework for boosted oxygen reduction catalysis. Nanoscale 2023, 15, 5448-57.
221. Wei, Y. S.; Zhang, M.; Zou, R.; Xu, Q. Metal-organic framework-based catalysts with single metal sites. Chem. Rev. 2020, 120, 12089-174.
222. Hou, C. C.; Zou, L.; Sun, L.; et al. Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 2020, 59, 7454-9.
223. Li, C.; Ni, T.; Yue, M.; Li, S.; Zhang, Q. Pristine metal-organic frameworks for sodium-ion batteries: past, present, and future. Batteries. Supercaps. 2024, 7, e202400138.
224. Zhang, Y.; Wang, Q.; Wu, L.; et al. Manipulating photogenerated electron flow in nickel single-atom catalysts for photocatalytic CO2 reduction into tunable syngas. Carbon. Energ. 2024, 6, e533.
225. Peng, J. Z.; Li, Y. L.; Cheng, Y. T.; et al. Metal-N4 model single-atom catalyst with electroneutral quadri-pyridine macrocyclic ligand for CO2 electroreduction. Carbon. Energ. 2024, 6, e506.
226. Chen, Q.; Yao, M.; Zhou, Y.; Sun, Y.; Zhang, G.; Pang, H. Etching MOF nanomaterials: precise synthesis and electrochemical applications. Coord. Chem. Rev. 2024, 517, 216016.
227. Zou, Y.; Wang, S. An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.
228. Aiyappa, H. B.; Masa, J.; Andronescu, C.; Muhler, M.; Fischer, R. A.; Schuhmann, W. MOFs for electrocatalysis: from serendipity to design strategies. Small. Methods. 2019, 3, 1800415.
229. Liu, Y.; Tang, C.; Cheng, M.; et al. Polyoxometalate@metal-organic framework composites as effective photocatalysts. ACS. Catal. 2021, 11, 13374-96.
230. Zhao, Y.; Zheng, L.; Jiang, D.; et al. Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions. Small 2021, 17, 2006590.
231. Yang, Y.; Yang, Y.; Liu, Y.; Zhao, S.; Tang, Z. Metal−organic frameworks for electrocatalysis: beyond their derivatives. Small. Sci. 2021, 1, 2100015.
232. Li, J. X.; Xiong, L. Y.; Fu, L. L.; Bo, W. B.; Du, Z. X.; Feng, X. Structural diversity of Mn(II) and Cu(II) complexes based on 2-carboxyphenoxyacetate linker: syntheses, conformation comparison and magnetic properties. J. Solid. State. Chem. 2022, 305, 122636.
233. Li, S.; Gao, Y.; Li, N.; Ge, L.; Bu, X.; Feng, P. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy. Environ. Sci. 2021, 14, 1897-927.
234. Zhou, P.; Lv, J.; Huang, X.; Lu, Y.; Wang, G. Strategies for enhancing the catalytic activity and electronic conductivity of MOFs-based electrocatalysts. Coord. Chem. Rev. 2023, 478, 214969.
235. He, X.; Deng, Y.; Zhang, Y.; et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell. Rep. Phys. Sci. 2020, 1, 100004.
236. Sui, J.; Liu, H.; Hu, S.; et al. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.
237. He, H.; Wang, H. H.; Liu, J.; Liu, X.; Li, W.; Wang, Y. Research progress and application of single-atom catalysts: a review. Molecules 2021, 26, 6501.
238. Chiromo, H.; Nyakuchena, J.; Streater, D.; et al. Metal-organic framework as a dual support for organic photosensitizers and single-atom catalysts. J. Phys. Chem. C. 2023, 127, 20354-9.
239. Xiao, M.; Zhang, L.; Luo, B.; et al. Molten-salt-mediated synthesis of an atomic nickel Co-catalyst on TiO2 for improved photocatalytic H2 evolution. Angew. Chem. Int. Ed. Engl. Engl. 2020, 59, 7297-301.
240. He, J.; Li, N.; Li, Z. G.; et al. Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts. Adv. Funct. Materials. 2021, 31, 2103597.
241. Thompson, W. A.; Sanchez, Fernandez. E.; Maroto-valer, M. M. Probability Langmuir-Hinshelwood based CO2 photoreduction kinetic models. Chem. Eng. J. 2020, 384, 123356.
242. Kovačič, Ž.; Likozar, B.; Huš, M. Photocatalytic CO2 reduction: a review of Ab initio mechanism, kinetics, and multiscale modeling simulations. ACS. Catal. 2020, 10, 14984-5007.
243. Qureshi, W. A.; Najeeb-Uz-Zaman, Haider. S.; He, P.; Ali, R. N.; Liu, Q. Q.; Yang, J. Pt quantum dots-coupled AgVO3/g-C3N4 Z-scheme photocatalyst for efficient sunlight-driven hydrogen production. Mater. Today. Sustain. 2023, 23, 100416.
244. Lee, S. Y.; Jang, H. W.; Lee, H. R.; Joh, H. I. Size effect of metal-organic frameworks with iron single-atom catalysts on oxygen-reduction reactions. Carbon. Lett. 2021, 31, 1349-55.
245. Ma, S.; Han, Z.; Leng, K.; et al. Ionic exchange of metal-organic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction. Small 2020, 16, e2001384.
246. Wang, K.; Chu, Y.; Zhang, X.; Zhao, R.; Tan, X. Facile method to synthesize a high-activity S-doped Fe/SNC single-atom catalyst by metal-organic frameworks for oxygen reduction reaction in acidic medium. Energy. Fuels. 2021, 35, 20243-9.
247. Qiu, Z.; Li, Y.; Gao, Y.; et al. 2D MOF-assisted pyrolysis-displacement-alloying synthesis of high-entropy alloy nanoparticles library for efficient electrocatalytic hydrogen oxidation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202306881.
248. Yang, Y.; Sun, Q.; Xue, J.; et al. MOF-derived N-doped carbon nanosticks coupled with Fe phthalocyanines for efficient oxygen reduction. Chem. Eng. J. 2023, 464, 142668.
249. Chellasamy, G.; Arumugasamy, S. K.; Kuppusamy, S.; et al. MXene-MOF architectural hybrid-supported nickel single-atom catalysts for hydrogen evolution reactions. J. Mater. Chem. A. 2024, 12, 1115-27.
250. Li, J.; Li, H.; Xie, W.; et al. Flame-assisted synthesis of O-coordinated single-atom catalysts for efficient electrocatalytic oxygen reduction and hydrogen evolution reaction. Small. Methods. 2022, 6, e2101324.
251. Liang, R. R.; Liu, Z.; Han, Z.; Yang, Y.; Rushlow, J.; Zhou, H. C. Anchoring catalytic metal nodes within a single-crystalline pyrazolate metal-organic framework for efficient heterogeneous catalysis. Angew. Chem. Int. Ed. Engl. 2025, 64, e202414271.
252. Tian, S.; Peng, C.; Dong, J.; et al. High-loading single-atomic-site silver catalysts with an Ag1-C2N1 structure showing superior performance for epoxidation of styrene. ACS. Catal. 2021, 11, 4946-54.
253. Ren, G.; Zhao, J.; Zhao, Z.; et al. Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. Engl. 2024, 63, e202314408.
254. Zhang, N.; Ye, C.; Yan, H.; et al. Single-atom site catalysts for environmental catalysis. Nano. Res. 2020, 13, 3165-82.
255. Li, L.; Li, N.; Xia, J.; et al. Metal-organic framework-derived Co single atoms anchored on N-doped hierarchically porous carbon as a pH-universal ORR electrocatalyst for Zn-air batteries. J. Mater. Chem. A. 2023, 11, 2291-301.
256. Wang, H.; Sun, C.; Zhu, E.; Shi, C.; Yu, J.; Xu, M. Core-shell MOF-derived Fe3C-Co-NC as high-performance ORR/OER bifunctional catalyst. J. Alloy. Compd. 2023, 948, 169728.
257. Wu, Y.; Tong, Y.; Luo, Y.; Xu, J.; Gu, X. K.; Ding, M. Chelation and stabilization of dynamic single- atom Cu in metal-organic frameworks for selective hydrogenation reactions. ACS. Catal. 2024, 14, 15869-78.
258. Xue, Q.; Wun, C. K. T.; Chen, T.; et al. Controlled synthesis of Cu,Fe dual-atom catalysts restrained on metal-organic frameworks for efficient O2 activation. J. Mater. Chem. A. 2023, 11, 14204-12.
259. Zhang, Y.; Sun, Y.; Wang, Q.; et al. Synergy of photogenerated electrons and holes toward efficient photocatalytic urea synthesis from CO2 and N2. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405637.
260. Chen, S.; Zheng, X.; Zhu, P.; et al. Copper atom pairs stabilize *OCCO dipole toward highly selective CO2 electroreduction to C2H4. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411591.
261. Gandionco, K. A.; Kim, J.; Bekaert, L.; Hubin, A.; Lim, J. Single-atom catalysts for the electrochemical reduction of carbon dioxide into hydrocarbons and oxygenates. Carbon. Energ. 2024, 6, e410.
262. Sun, Z.; Zhang, S.; Zheng, B.; et al. Metal-organic framework-derived Mn/Ni dual-metal single-atom catalyst for efficient oxygen reduction reaction. Inorganics 2023, 11, 101.
263. Liu, X.; Jia, C.; Jiang, G.; et al. Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese. Chem. Lett. 2024, 35, 109455.
264. Liu, X.; Song, X.; Jiang, G.; et al. Pt single-atom collaborate with Pt atom-clusters by an in-situ confined strategy for accelerating electrocatalytic hydrogen evolution. Chem. Eng. J. 2024, 481, 148430.
265. Guan, G. W.; Zheng, S. T.; Xia, M.; et al. Incorporating CdS and anchoring Pt single atoms into porphyrinic metal-organic frameworks for superior visible-light and sunlight-driven H2 evolution. Chem. Eng. J. 2023, 464, 142530.
266. Wang, W.; Deng, X.; Tian, Z.; Li, D. C.; Wang, G. H. Mesopore-confined synthesis of cobalt nanoparticles with single atoms in close psroximity for efficient oxygen reduction. Chem. Mater. 2023, 35, 6070-82.
267. Gong, Y. N.; Jiao, L.; Qian, Y.; et al. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem. Int. Ed. Engl. 2020, 59, 2727-31.
268. Peng, J. X.; Yang, W.; Jia, Z.; Jiao, L.; Jiang, H. L. Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano. Res. 2022, 15, 10063-9.
269. McCarver, G. A.; Yildirim, T.; Zhou, W. Catalyst engineering for the selective reduction of CO2 to CH4: a first-principles study on X-MOF-74 (X = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemphyschem 2023, 24, e202300645.
270. Lim, J. W.; Choo, D. H.; Cho, J. H.; et al. A MOF-derived pyrrolic N-stabilized Ni single atom catalyst for selective electrochemical reduction of CO2 to CO at high current density. J. Mater. Chem. A. 2024, 12, 11090-100.
271. Song, P.; Hu, B.; Zhao, D.; et al. Modulating the asymmetric atomic interface of copper single atoms for efficient CO2 electroreduction. ACS. Nano. 2023, 17, 4619-28.
272. Feng, M.; Wu, X.; Cheng, H.; et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction. J. Mater. Chem. A. 2021, 9, 23817-27.
273. Liang, J.; Yu, H.; Shi, J.; Li, B.; Wu, L.; Wang, M. Dislocated bilayer MOF enables high-selectivity photocatalytic reduction of CO2 to CO. Adv. Mater. 2023, 35, e2209814.
274. Liu, Z.; Chen, Z.; Li, M.; et al. Construction of single Ni atom-immobilized ZIF-8 with ordered hierarchical pore structures for selective CO2 photoreduction. ACS. Catal. 2023, 13, 6630-40.
275. Zhao, L.; Bian, J.; Zhang, X.; et al. Construction of ultrathin S-scheme heterojunctions of single Ni atom immobilized Ti-MOF and BiVO4 for CO2 photoconversion of nearly 100% to CO by pure water. Adv. Mater. 2022, 34, 2205303.
276. Li, J.; Yu, X.; Xue, W.; Nie, L.; Huang, H.; Zhong, C. Engineering the direct Z-scheme systems over lattice intergrown of MOF-on-MOF for selective CO2 photoreduction to CO. AIChE. J. 2023, 69, e17906.
277. Gao, C.; Li, L.; Yan, X.; et al. Triethylenediamine cobalt complex encapsulated in a metal-organic framework cage to prepare a cobalt single-atom catalyst with a high Co-N4 density for an efficient oxygen reduction reaction. J. Colloid. Interface. Sci. 2024, 653, 296-307.
278. Pan, W. G.; Li, C. F.; Zhang, Z. R.; Wu, T.; Guo, R. T. Efficient CO2 reduction under visible light: synergistic effects of Cu nanoparticles and Ni single atoms. Appl. Catal. B-Environ. 2024, 343, 123492.
279. Zeng, P.; Liu, H.; Jia, H.; Cai, J.; Deng, X.; Peng, T.
280. Wang, G.; He, C. T.; Huang, R.; Mao, J.; Wang, D.; Li, Y. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339-45.
281. Yuan, J.; Chen, Y.; Liu, F.; Su, Y. Fabrication of dual atomic copper-indium (CuIn) catalysts for electrochemical CO2 reduction to methanol. Catal. Commun. 2023, 177, 106640.
282. Tan, J.; Yu, M.; Cai, Z.; Lou, X.; Wang, J.; Li, Z. MOF-derived synthesis of MnS/In2S3 p-n heterojunctions with hierarchical structures for efficient photocatalytic CO2 reduction. J. Colloid. Interface. Sci. 2021, 588, 547-56.