REFERENCES
1. Wu, S.; Liu, H.; Huang, Z.; Xu, H.; Shen, W. O-vacancy-rich porous MnO2 nanosheets as highly efficient catalysts for propane catalytic oxidation. Appl. Catal. B. Environ. 2022, 312, 121387.
2. Li, Y. Y.; Ren, Y.; He, J.; Xiao, H.; Li, J. R. Recent advances of the effect of H2O on VOC oxidation over catalysts: influencing factors, inhibition/promotion mechanisms, and water resistance strategies. Environ. Sci. Technol. 2025, 59, 1034-59.
3. Wang, L.; Lin, B.; Gong, Z.; et al. Boosting low-temperature activity and high water-tolerance of CoxCey catalysts on propane catalytic oxidation: insights of the Ce corporation. Appl. Surf. Sci. 2025, 714, 164386.
4. Guo, X.; Sun, S.; Gao, M.; et al. Highly efficient Ag/Ce–Zr catalyst for catalytic oxidation of NVOCs: balance of redox ability and acidity. Rare. Met. 2024, 43, 6473-85.
5. Zhang, H.; Wang, Z.; Wei, L.; Liu, Y.; Dai, H.; Deng, J. Recent progress on VOC pollution control via the catalytic method. Chin. J. Catal. 2024, 61, 71-96.
6. Lou, B.; Shakoor, N.; Adeel, M.; et al. Catalytic oxidation of volatile organic compounds by non-noble metal catalyst: current advancement and future prospectives. J. Clean. Prod. 2022, 363, 132523.
7. Zhao, J.; Shi, L.; Duan, W.; et al. Emission factors of environmentally persistent free radicals in PM2.5 from rural residential solid fuels combusted in a traditional stove. Sci. Total. Environ. 2021, 773, 145151.
8. Lewis, A. C.; Carslaw, N.; Marriott, P. J.; et al. A larger pool of ozone-forming carbon compounds in urban atmospheres. Nature 2000, 405, 778-81.
9. Ge, S.; Chen, Y.; Guo, Y.; Llorca, J.; Soler, L. Mechanochemically activated Au/CeO2 for enhanced CO oxidation and COPrOX reaction. Appl. Mater. Today. 2023, 33, 101857.
10. Pei, J.; Ge, S.; Xu, G.; et al. Nanocatalyst engineering via metal ion doping: regulating rate-determining steps for stable ozone decomposition. ACS. Appl. Nano. Mater. 2025, 8, 21902-11.
11. Liang, B.; Bai, H.; Bai, D.; Liu, X. Emissions of non-methane hydrocarbons and typical volatile organic compounds from various grate-firing coal furnaces. Atmos. Pollut. Res. 2022, 13, 101380.
12. Sun, J.; Shen, Z.; Zhang, L.; et al. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: emission factors, source profiles, and effects on regional air quality. Environ. Int. 2019, 133, 105252.
13. Hussain, M. S.; Gupta, G.; Mishra, R.; et al. Unlocking the secrets: volatile organic compounds (VOCs) and their devastating effects on lung cancer. Pathol. Res. Pract. 2024, 255, 155157.
14. Yang, C.; Miao, G.; Pi, Y.; et al. Abatement of various types of VOCs by adsorption/catalytic oxidation: a review. Chem. Eng. J. 2019, 370, 1128-53.
15. Ren, Y.; Guan, X.; Peng, Y.; et al. Characterization of VOC emissions and health risk assessment in the plastic manufacturing industry. J. Environ. Manage. 2024, 357, 120730.
16. Sadegh, F.; Sadegh, N.; Wongniramaikul, W.; Apiratikul, R.; Choodum, A. Adsorption of volatile organic compounds on biochar: a review. Process. Saf. Environ. Prot. 2024, 182, 559-78.
17. Moreira, M. T.; Noya, I.; Feijoo, G. The prospective use of biochar as adsorption matrix - a review from a lifecycle perspective. Bioresour. Technol. 2017, 246, 135-41.
18. Wu, Z.; Meng, X.; Zhao, Z. Efficient removal of VOCs enabled by triboelectric-photocatalytic coupling effect. Nano. Energy. 2024, 132, 110364.
19. Yang, Y.; Zhao, S.; Cui, L.; et al. Recent advancement and future challenges of photothermal catalysis for VOCs elimination: From catalyst design to applications. Green. Energy. Environ. 2023, 8, 654-72.
20. Li, J.; Yu, E.; Cai, S.; et al. Noble metal free, CeO2/LaMnO3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light. Appl. Catal. B. Environ. 2019, 240, 141-52.
21. Liu, Y.; Cai, Y.; Tang, X.; et al. Insight into the roles of Pd state and CeO2 property in C3H8 catalytic oxidation on Pd/CeO2. Appl. Surf. Sci. 2022, 605, 154675.
22. Zhao, Q.; Zheng, Y.; Song, C.; et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnOx on Ni foam for VOC oxidation. Appl. Catal. B. Environ. 2020, 265, 118552.
23. Li, G.; Li, N.; Sun, Y.; et al. Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation. Appl. Catal. B. Environ. 2021, 282, 119512.
24. Zhang, K.; Ding, H.; Pan, W.; et al. Research progress of a composite metal oxide catalyst for VOC degradation. Environ. Sci. Technol. 2022, 56, 9220-36.
25. Xu, L.; Zhou, Q.; Wen, C.; et al. Mechanistic understanding of oxygen spillover enables efficient propane combustion over Pt/AlSOx catalyst. Sep. Purif. Technol. 2025, 354, 129193.
26. Mu, Y.; Wang, X.; Yang, Y.; et al. Synthesis, characterization and application of copper-ceria catalysts for catalytic elimination of air pollutants: a review. J. Rare. Earths. 2025, In Press.
27. Zhang, W.; Valverde, J. L.; Giroir-fendler, A. Co3O4-based catalysts for propane total oxidation: a state-of-the-art minireview. Appl. Catal. B. Environ. 2023, 337, 122908.
28. Liotta, L. Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B. Environ. 2010, 100, 403-12.
29. Yoshida, H.; Yazawa, Y.; Hattori, T. Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion. Catal. Today. 2003, 87, 19-28.
30. Huang, Z.; Ding, J.; Yang, X.; et al. Highly efficient oxidation of propane at low temperature over a Pt-based catalyst by optimization support. Environ. Sci. Technol. 2022, 56, 17278-87.
31. Ma, X.; Tang, Y.; Liu, Y.; et al. A-site cation exfoliation of amorphous SmMnxOy oxides for low temperature propane oxidation. J. Catal. 2022, 409, 59-69.
32. Dong, J.; Li, D.; Zhang, Y.; Chang, P.; Jin, Q. Insights into the CeO2 facet-depended performance of propane oxidation over Pt-CeO2 catalysts. J. Catal. 2022, 407, 174-85.
33. Wang, Y.; Wang, C.; Zeng, K.; et al. Revealing the strong interaction effect of MnO nanoparticles and Nb2O5 supports with variable morphologies on catalytic propane oxidation. Appl. Surf. Sci. 2022, 576, 151797.
34. Tan, B.; Huo, Z.; Sun, L.; et al. Ionic liquid-modulated synthesis of MnO2 nanowires for promoting propane combustion: microstructure engineering and regulation mechanism. Colloids. Surf. A. Physicochem. Eng. Asp. 2023, 656, 130431.
35. Song, X.; Sun, L.; Gao, P.; et al. Unveiling the remarkable catalytic performance of Al2O3@Cu‐Ce core–shell nanofiber catalyst for carbonyl sulfide hydrolysis at low temperature. EcoEnergy 2025, 3, e70011.
36. Chu, S.; Wang, E.; Feng, F.; et al. A review of noble metal catalysts for catalytic removal of VOCs. Catalysts 2022, 12, 1543.
37. Meng, F.; Tang, X.; Kadja, G. T.; et al. A systematic review with improving activity and stability in VOCs elimination by oxidation of noble metals: starting from active sites. Sep. Purif. Technol. 2025, 354, 129222.
38. Liu, Y.; Deng, J.; Xie, S.; Wang, Z.; Dai, H. Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts. Chin. J. Catal. 2016, 37, 1193-205.
39. You, Y.; Xu, A.; Lv, Y.; et al. Constructing tri-coordinated Al (AlIII) sites to boost complete propane oxidation of the Pt/Al2O3 catalyst. Catal. Sci. Technol. 2024, 14, 4058-67.
40. Zhao, P.; Li, X.; Liao, W.; et al. Understanding the role of NbOx on Pt/Al2O3 for effective catalytic propane oxidation. Ind. Eng. Chem. Res. 2019, 58, 21945-52.
41. Li, X.; Liu, Y.; Liao, W.; et al. Synergistic roles of Pt0 and Pt2+ species in propane combustion over high-performance Pt/AlF3 catalysts. Appl. Surf. Sci. 2019, 475, 524-31.
42. Cen, B.; Wang, W.; Zhao, P.; et al. Revealing the different roles of sulfates on Pt/Al2O3 catalyst for methane and propane combustion. Catal. Lett. 2022, 152, 863-71.
43. Wang, H.; Rao, C.; Liu, K.; et al. W single-atom-engineered acid sites over Pt/Al2O3 catalysts to boost propane oxidation activity. ACS. Sustainable. Chem. Eng. 2025, 13, 15050-61.
44. Bailey, L. A.; Douthwaite, M.; Davies, T. E.; Morgan, D. J.; Taylor, S. H. Controlling palladium particle size and dispersion as a function of loading by chemical vapour impregnation: an investigation using propane total oxidation as a model reaction. Catal. Sci. Technol. 2024, 14, 5045-53.
45. Liang, P.; Wang, L.; Wang, Q.; et al. Improved catalytic oxidation of propane over phosphate-modified Pd/Al2O3-TiO2 catalyst. J. Environ. Chem. Eng. 2023, 11, 109569.
46. Liu, W.; Yang, S.; Zhang, Q.; et al. Insights into flower-like Al2O3 spheres with rich unsaturated pentacoordinate Al3+ sites stabilizing Ru-CeOx for propane total oxidation. Appl. Catal. B. Environ. 2021, 292, 120171.
47. Adamska, K.; Okal, J.; Tylus, W. Stable bimetallic Ru-Mo/Al2O3 catalysts for the light alkane combustion: effect of the Mo addition. Appl. Catal. B. Environ. 2019, 246, 180-94.
48. Xu, A.; Ge, S.; Yu, A.; et al. Breaking the trade-off between Pt chemical state and active site density by SiOx engineering on Pt/TiO2 for complete propane oxidation. Appl. Catal. B. Environ. Energy. 2026, 382, 125958.
49. Fang, Y.; Li, H.; Zhang, Q.; et al. Oxygen vacancy-governed opposite catalytic performance for C3H6 and C3H8 combustion: the effect of the Pt electronic structure and chemisorbed oxygen species. Environ. Sci. Technol. 2022, 56, 3245-57.
50. Yu, Z.; Fang, Y.; Pan, C.; et al. Construction of electron-enriched Ptδ+ with reactive oxygen species for enhanced propane catalytic combustion. ACS. Appl. Mater. Interfaces. 2025, 17, 21246-56.
51. Huang, L.; Xu, L.; Gao, B.; et al. Deep oxidation of propane over PtIr/TiO2 bimetallic catalysts: mechanistic investigation of promoting roles of Ir species. Appl. Surf. Sci. 2023, 638, 158149.
52. Dong, J.; Li, T.; Li, S.; et al. Local environment and electronic structure of Pt-TiO2 catalysts define the reactivity of CO oxidation and C3H8 combustion: the crystal phase of TiO2 determining. ACS. Catal. 2025, 15, 15794-807.
53. Camposeco, R.; Castillo, S.; Zanella, R. Catalytic oxidation of propane and carbon monoxide by Pd nanoparticles on Mn/TiO2 catalysts. Catal. Lett. 2024, 154, 155-69.
54. Camposeco, R.; Miguel, O.; Torres, A. E.; Armas, D. E.; Zanella, R. Highly active Ru/TiO2 nanostructures for total catalytic oxidation of propane. Environ. Sci. Pollut. Res. Int. 2023, 30, 98076-90.
55. Tang, X.; Ge, S.; Lv, Y.; et al. Blocking the operando formation of single-atom spectators by interfacial engineering. Angew. Chem. Int. Ed. Engl. 2025, 64, e202505507.
56. Ge, S.; Fan, W.; Tang, X.; et al. Revealing the size effect of ceria nanocube-supported platinum nanoparticles in complete propane oxidation. ACS. Catal. 2024, 14, 2532-44.
57. Huang, Z.; Cao, S.; Yu, J.; et al. Total oxidation of light alkane over phosphate-modified Pt/CeO2 catalysts. Environ. Sci. Technol. 2022, 56, 9661-71.
58. Ge, S.; Chen, Y.; Tang, X.; et al. Preformed Pt nanoparticles supported on nanoshaped CeO2 for total propane oxidation. ACS. Appl. Nano. Mater. 2023, 6, 15073-84.
59. Gao, B.; Zhang, K.; Wang, Y.; Lu, J.; Liu, P. On the structure insensitivity of propane total oxidation over Pt/CeO2: a comparison between single atoms, clusters and nanoparticles. ChemCatChem 2023, 15, e202301160.
60. Xia, L.; Jian, Y.; Liu, Q.; et al. Boosted light alkane deep oxidation via metal bond length modulation-induced C-C bond preferential activation. Environ. Sci. Technol. 2024, 58, 3472-82.
61. Liu, Y.; Yang, J.; Yang, J.; et al. Understanding the three-way catalytic reaction on Pd/CeO2 by tuning the chemical state of Pd. Appl. Surf. Sci. 2021, 556, 149766.
62. Wang, A.; Ding, J.; Li, M.; et al. Robust Ru/Ce@Co catalyst with an optimized support structure for propane oxidation. Environ. Sci. Technol. 2024, 58, 12742-53.
63. Sun, Y.; Ye, F.; Ding, J.; et al. Regulating the spatial distribution of Ru nanoparticles on CeO2 support for enhanced propane oxidation. ACS. Appl. Nano. Mater. 2022, 5, 3937-45.
64. Yan, J.; Wang, Y.; Ding, M.; et al. Highly efficient Ru/CeO2 catalyst using colloidal chemical method for propane oxidation. Chem. Eng. J. 2024, 500, 156936.
65. Wang, Z.; Huang, Z.; Brosnahan, J. T.; et al. Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environ. Sci. Technol. 2019, 53, 5349-58.
66. Enterkin, J. A.; Setthapun, W.; Elam, J. W.; et al. Propane oxidation over Pt/SrTiO3 nanocuboids. ACS. Catal. 2011, 1, 629-35.
67. Bal’zhinimaev, B. S.; Kovalyov, E. V.; Kaichev, V. V.; Suknev, A. P.; Zaikovskii, V. I. Catalytic abatement of VOC over novel Pt fiberglass catalysts. Top. Catal. 2017, 60, 73-82.
68. Shan, S.; Li, J.; Maswadeh, Y.; et al. Surface oxygenation of multicomponent nanoparticles toward active and stable oxidation catalysts. Nat. Commun. 2020, 11, 4201.
69. O’brien, C. P.; Jenness, G. R.; Dong, H.; Vlachos, D. G.; Lee, I. C. Deactivation of Pt/Al2O3 during propane oxidation at low temperatures: kinetic regimes and platinum oxide formation. J. Catal. 2016, 337, 122-32.
70. Liu, Y.; Li, X.; Liao, W.; et al. Highly active Pt/BN catalysts for propane combustion: the roles of support and reactant-induced evolution of active sites. ACS. Catal. 2019, 9, 1472-81.
71. Peng, Q.; Han, W.; Han, W.; Dong, F.; Tang, Z.; Zhou, Z. Tailored Pt/NiaCobAlOx catalysts derived from LDH structure for efficient catalytic combustion of propane. Chem. Eng. J. 2024, 500, 157181.
72. Dun, Y.; Liu, Y.; Xu, J.; et al. Pt0-MnSO4 active centers on modified SmMn2O5 mullite oxides for efficient propane oxidation. Appl. Catal. B. Environ. Energy. 2025, 371, 125223.
73. Avila, M.; Vignatti, C.; Apesteguía, C.; Garetto, T. Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chem. Eng. J. 2014, 241, 52-9.
74. Yazawa, Y.; Yoshida, H.; Hattori, T. The support effect on platinum catalyst under oxidizing atmosphere: improvement in the oxidation-resistance of platinum by the electrophilic property of support materials. Appl. Catal. A. Gen. 2002, 237, 139-48.
75. Yazawa, Y.; Yoshida, H.; Komai, S.; Hattori, T. The additive effect on propane combustion over platinum catalyst: control of the oxidation-resistance of platinum by the electronegativity of additives. Appl. Catal. A. Gen. 2002, 233, 113-24.
76. Wang, W.; Li, D.; Yu, H.; et al. Insights into different reaction behaviors of propane and CO oxidation over Pt/CeO2 and Pt/Nb2O5: the crucial roles of support properties. J. Phys. Chem. C. 2021, 125, 19301-10.
77. Xian, Y.; Li, B.; Wen, C.; et al. Boosting propane combustion on dual active sites of Pt/WO3 through regulating Pt sites and activating propane on WO3 surface. Fuel 2025, 385, 134172.
78. Wen, C.; Xu, L.; Hao, Y.; et al. Individual functionality and synergistic effects of redox site–acid site in propane oxidation. ACS. Catal. 2025, 15, 10746-57.
79. Luo, H.; Wu, X.; Weng, D.; Liu, S.; Ran, R. A novel insight into enhanced propane combustion performance on PtUSY catalyst. Rare. Met. 2017, 36, 1-9.
80. Park, J. E.; Kim, K. B.; Kim, Y.; Song, K. S.; Park, E. D. Effect of Pt particle size on propane combustion over Pt/ZSM-5. Catal. Lett. 2013, 143, 1132-8.
81. Lykhach, Y.; Kozlov, S. M.; Skála, T.; et al. Counting electrons on supported nanoparticles. Nat. Mater. 2016, 15, 284-8.
82. Jeong, H.; Kwon, O.; Kim, B.; et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 2020, 3, 368-75.
83. Shao, C.; Yang, J.; You, Y.; et al. Regulating the selective dispersion of tungsten oxide to promote propane combustion on Pt-nanoparticle catalysts supported on WOx/ZrO2 by tuning the zirconia crystal phase. ACS. Appl. Nano. Mater. 2022, 5, 13482-97.
84. Liao, W.; Fang, X.; Cen, B.; et al. Deep oxidation of propane over WO3-promoted Pt/BN catalysts: the critical role of Pt-WO3 interface. Appl. Catal. B. Environ. 2020, 272, 118858.
85. Wen, C.; Xu, L.; Zhao, W.; et al. Novel strategy to regulate the geometric and electronic structure of Pt catalyst for efficient propane combustion. Appl. Catal. A. Gen. 2024, 680, 119778.
86. Zhou, Q.; Liu, L.; Xian, Y.; et al. Synergistic catalysis of Pt-acid sites on Al2O3-AlPO4 hybrids for enhanced propane combustion. Fuel 2026, 405, 136540.
87. Shao, C.; Cui, Y.; Zhang, L.; et al. Boosting propane purification on Pt/ZrOSO4 nanoflowers: insight into the roles of different sulfate species in synergy with Pt. Sep. Purif. Technol. 2023, 304, 122367.
88. Xu, L.; Wen, C.; Luo, X.; et al. Regulating the synergy of sulfate and Pt species in Pt/ZSM-5 for propane complete oxidation. Appl. Catal. B. Environ. Energy. 2024, 354, 124135.
89. Gawthrope, D. E.; Lee, A. F.; Wilson, K. Support-mediated alkane activation over Pt–SO4/Al2O3 Catalysts. Catal. Lett. 2004, 94, 25-9.
90. Wang, B.; Wu, X.; Ran, R.; Si, Z.; Weng, D. Participation of sulfates in propane oxidation on Pt/SO42-/CeO2–ZrO2 catalyst. J. Mol. Catal. A. Chem. 2012, 361-362, 98-103.
91. Huang, L.; Zhu, X.; Xu, L.; Wang, Y.; Lu, J. Towards the promoting roles of SO2 in total oxidation of propane over Pt catalysts. Sep. Purif. Technol. 2025, 355, 129759.
92. Hao, H.; Jin, B.; Liu, W.; Wu, X.; Yin, F.; Liu, S. Robust Pt@TiOx/TiO2 catalysts for hydrocarbon combustion: effects of Pt-TiOx interaction and sulfates. ACS. Catal. 2020, 10, 13543-8.
93. Tan, W.; Xie, S.; Cai, Y.; et al. Surface lattice-embedded Pt single-atom catalyst on ceria-zirconia with superior catalytic performance for propane oxidation. Environ. Sci. Technol. 2023, 57, 12501-12.
94. Zhang, B.; Liu, R.; Li, L.; et al. Ultra-stable low-coordinated PtSA/CeZrO2 ordered macroporous structure integrated industrial-scale monolithic catalysts for high-temperature oxidation. Nat. Commun. 2025, 16, 7847.
95. Liu, Y.; Zou, Y.; Wang, Y.; Ma, Y.; Zhang, S.; Qu, Y. Strong metal-support interactions between Pt and CeO2 for efficient methanol decomposition. Chem. Eng. J. 2023, 475, 146219.
96. Tang, X.; Yu, A.; Yang, Q.; et al. Significance of epitaxial growth of PtO2 on rutile TiO2 for Pt/TiO2 catalysts. J. Am. Chem. Soc. 2024, 146, 3764-72.
97. You, Y.; Xu, A.; Tang, X.; et al. Refining metal–support interactions via surface modification of irreducible oxide support for enhanced complete propane oxidation. ACS. Catal. 2024, 14, 11457-67.
98. Duan, H.; Kong, F.; Bi, X.; et al. Catalytic combustion of methane over noble metal catalysts. ACS. Catal. 2024, 14, 17972-92.
99. Van den Bossche, M.; Grönbeck, H. Methane oxidation over PdO(101) revealed by first-principles kinetic modeling. J. Am. Chem. Soc. 2015, 137, 12035-44.
100. Chin, Y. H.; Buda, C.; Neurock, M.; Iglesia, E. Consequences of metal-oxide interconversion for C-H bond activation during CH4 reactions on Pd catalysts. J. Am. Chem. Soc. 2013, 135, 15425-42.
101. Kim, K. B.; Kim, M. K.; Kim, Y. H.; Song, K. S.; Park, E. D. Propane combustion over supported Pd catalysts. Res. Chem. Intermed. 2010, 36, 603-11.
102. You, R.; Li, Z.; Cao, T.; Nan, B.; Si, R.; Huang, W. Synthesis in a glovebox: utilizing surface oxygen vacancies to enhance the atomic dispersion of palladium on ceria for carbon monoxide oxidation and propane combustion. ACS. Appl. Nano. Mater. 2018, 1, 4988-97.
103. Khan, H. A.; Abou-Daher, M.; de Freitas, A. S.; Subburaj, J.; Tall, O. E.; Farooq, A. Performance studies of Pt, Pd and PtPd supported on SBA-15 for wet CO and hydrocarbon oxidation. Catal. Today. 2024, 426, 114370.
104. Hu, Z.; Liu, X.; Meng, D.; Guo, Y.; Guo, Y.; Lu, G. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS. Catal. 2016, 6, 2265-79.
105. Li, M.; Wu, X.; Wan, J.; Liu, S.; Ran, R.; Weng, D. Pd–Ce0.33Zr0.67O2–Al2O3 catalyst for propane oxidation: interactions between the precious metal and support under the hydrothermal ageing. Catal. Today. 2015, 242, 322-8.
106. Peng, H.; Dong, T.; Yang, S.; et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light alkanes. Nat. Commun. 2022, 13, 295.
107. Khudorozhkov, A. K.; Chetyrin, I. A.; Bukhtiyarov, A. V.; Prosvirin, I. P.; Bukhtiyarov, V. I. Propane oxidation over Pd/Al2O3: kinetic and in situ XPS study. Top. Catal. 2017, 60, 190-7.
108. Zhou, R.; Xing, F.; Wang, S.; Lu, J.; Jin, L.; Luo, M. CO and C3H8 total oxidation over Pd/La-Al2O3 catalysts: effect of calcination temperature and hydrothermal treatment. J. Rare. Earths. 2014, 32, 621-7.
109. Li, M.; Weng, D.; Wu, X.; Wan, J.; Wang, B. Importance of re-oxidation of palladium by interaction with lanthana for propane combustion over Pd/Al2O3 catalyst. Catal. Today. 2013, 201, 19-24.
110. Yan, J.; Wang, L.; Guo, Y.; Guo, Y.; Dai, Q.; Zhan, W. Comparisons on thermal and water-resistance of Ru and Pd supported on cobalt-doped alumina nanosheets for catalytic combustion of propane. Appl. Catal. A. Gen. 2021, 628, 118398.
111. Taylor, M. N.; Zhou, W.; Garcia, T.; et al. Synergy between tungsten and palladium supported on titania for the catalytic total oxidation of propane. J. Catal. 2012, 285, 103-14.
112. Okal, J.; Zawadzki, M.; Krajczyk, L. Light alkane oxidation over Ru supported on ZnAl2O4, CeO2 and Al2O3. Catal. Today. 2011, 176, 173-6.
113. Xia, H.; Bai, Y.; Niu, Q.; et al. Support-dependent activity and thermal stability of Ru-based catalysts for catalytic combustion of light hydrocarbons. Ind. Eng. Chem. Res. 2023, 62, 1826-38.
114. Hu, Z.; Wang, Z.; Guo, Y.; et al. Total oxidation of propane over a Ru/CeO2 catalyst at low temperature. Environ. Sci. Technol. 2018, 52, 9531-41.
115. Wu, J.; Chen, B.; Yan, J.; et al. Ultra-active Ru supported on CeO2 nanosheets for catalytic combustion of propane: experimental insights into interfacial active sites. Chem. Eng. J. 2022, 438, 135501.
116. Okal, J. The interaction of oxygen with high loaded Ru/γ-Al2O3 catalyst. Mater. Res. Bull. 2009, 44, 318-23.
117. Okal, J.; Zawadzki, M.; Tylus, W. Microstructure characterization and propane oxidation over supported Ru nanoparticles synthesized by the microwave-polyol method. Appl. Catal. B. Environ. 2011, 101, 548-59.
118. Zhang, Q.; Song, Y.; Xu, A.; et al. C3H8 oxidation on atomic-scale catalysts: insights into active oxygen species and reaction pathways. J. Hazard. Mater. 2025, 494, 138716.
119. Deng, W.; Gao, B.; Huang, J.; et al. Combustion of propane over various metals doped CeO2 nanosheet supported ruthenium catalysts. J. Environ. Chem. Eng. 2025, 13, 116264.
120. Deng, W.; She, X.; Chen, B.; et al. Catalytic combustion of propane over second metal-modified Ru supported on CeO2 nanosheet. Sep. Purif. Technol. 2025, 356, 129874.
121. Ge, H.; Yao, J.; Fan, J.; Zeng, J.; Li, R.; Qin, Y. Pt–Co separation for enhancing bimetallic catalysis in selective hydrogenation reaction. ACS. Catal. 2025, 15, 16740-7.
122. Huang, Z.; Yu, J.; Li, W.; et al. Optimising PtFe nanoparticle structure to enhance catalytic activity and stability for propane oxidation. Appl. Catal. B. Environ. 2024, 340, 123198.
123. Tsui, C. J.; Leung, K.; Tay, Y.; et al. Highly durable Pt–Ru-doped Ce0.9Zr0.1O2 as an effective dual catalyst for low-temperature simultaneous propane and carbon monoxide oxidation. J. Phys. Chem. C. 2022, 126, 9334-51.
124. Chen, J.; Lv, X.; Xu, W.; Li, X.; Chen, J.; Jia, H. Utilizing Cl coordination to facilitate Ru-Ag self-assembling into alloy and recover thermally-inactivated catalyst for propane combustion. Appl. Catal. B. Environ. 2021, 290, 119989.
125. Baranowska, K.; Okal, J. Bimetallic Ru-Re/γ-Al2O3 catalysts for the catalytic combustion of propane: effect of the Re addition. Appl. Catal. A. Gen. 2015, 499, 158-67.
126. Baranowska, K.; Okal, J. Performance and stability of the Ru–Re/γ-Al2O3 catalyst in the total oxidation of propane: influence of the order of impregnation. Catal. Lett. 2016, 146, 72-81.
127. Yazawa, Y.; Yoshida, H.; Takagi, N.; et al. Acid strength of support materials as a factor controlling catalytic activity of noble metal catalysts for catalytic combustion. Stud. Surf. Sci. Catal. 2000, 130, 2189-94.
128. Wettergren, K.; Schweinberger, F. F.; Deiana, D.; et al. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening. Nano. Lett. 2014, 14, 5803-9.
129. Yuan, W.; Zhang, D.; Ou, Y.; et al. Direct in situ TEM visualization and insight into the facet-dependent sintering behaviors of gold on TiO2. Angew. Chem. Int. Ed. Engl. 2018, 57, 16827-31.
130. Hu, S.; Li, W. X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360-5.
131. Xiong, H.; Lin, S.; Goetze, J.; et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. Engl. 2017, 56, 8986-91.
132. Cargnello, M.; Delgado Jaén, J. J.; Hernández Garrido, J. C.; et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 2012, 337, 713-7.
133. Goodman, E. D.; Johnston-Peck, A. C.; Dietze, E. M.; et al. Catalyst deactivation via decomposition into single atoms and the role of metal loading. Nat. Catal. 2019, 2, 748-55.
134. Okal, J.; Zawadzki, M. Influence of catalyst pretreatments on propane oxidation over Ru/γ-Al2O3. Catal. Lett. 2009, 132, 225-34.
135. Okal, J.; Zawadzki, M. Combustion of propane over novel zinc aluminate-supported ruthenium catalysts. Appl. Catal. B. Environ. 2011, 105, 182-90.
136. Wang, J.; Jiang, Z.; Xu, H.; et al. Elucidating confinement and microenvironment of Ru clusters stably confined in MFI zeolite for efficient propane oxidation. Angew. Chem. Int. Ed. Engl. 2025, 64, e202417618.
137. Tao, J.; Zhang, Q.; Zhao, Y.; et al. Elucidating the role of confinement and shielding effect over zeolite enveloped Ru catalysts for propane low temperature degradation. Chemosphere 2022, 302, 134884.
138. Okal, J.; Zawadzki, M.; Kraszkiewicz, P.; Adamska, K. Ru/CeO2 catalysts for combustion of mixture of light hydrocarbons: effect of preparation method and metal salt precursors. Appl. Catal. A. Gen. 2018, 549, 161-9.
139. Dinhová, T. N.; Bezkrovnyi, O.; Piliai, L.; et al. Unraveling the effects of reducing and oxidizing pretreatments and humidity on the surface chemistry of the Ru/CeO2 catalyst during propane oxidation. J. Phys. Chem. C. Nanomater. Interfaces. 2025, 129, 1746-57.
140. Bezkrovnyi, O.; Vorokhta, M.; Pawlyta, M.; et al. In situ observation of highly oxidized Ru species in Ru/CeO2 catalyst under propane oxidation. J. Mater. Chem. A. 2022, 10, 16675-84.
141. Wang, Y.; Gallego, J.; Wang, W.; et al. Unveiling the self-activation of exsolved LaFe0.9Ru0.1O3 perovskite during the catalytic total oxidation of propane. Chin. J. Catal. 2023, 54, 250-64.
142. Wang, Y.; Paciok, P.; Pielsticker, L.; et al. Boosting Ru atomic efficiency of LaFe0.97Ru0.03O3 via knowledge-driven synthesis design. Chem. Sci. 2025, 16, 7739-50.
143. Gao, B.; Deng, W.; Xia, H.; et al. Thermally reconstructed Ru/La-Co3O4 nanosheets with super thermal stability for catalytic combustion of light hydrocarbons: induced surface LaRuO3 active phase. Adv. Sci. 2025, 12, e2414919.
144. Debecker, D. P.; Farin, B.; Gaigneaux, E. M.; Sanchez, C.; Sassoye, C. Total oxidation of propane with a nano-RuO2/TiO2 catalyst. Appl. Catal. A. Gen. 2014, 481, 11-8.
145. Kim, A.; Debecker, D. P.; Devred, F.; Dubois, V.; Sanchez, C.; Sassoye, C. CO2 methanation on Ru/TiO2 catalysts: on the effect of mixing anatase and rutile TiO2 supports. Appl. Catal. B. Environ. 2018, 220, 615-25.
146. Ledwa, K. A.; Kępiński, L.; Ptak, M.; Szukiewicz, R. Ru0.05Ce0.95O2-y deposited on functionalized alumina as a smart catalyst for propane oxidation. Appl. Catal. B. Environ. 2020, 274, 119090.
147. Ledwa, K. A.; Pawlyta, M.; Kępiński, L. RuxCe1-xO2-y nanoparticles deposited on functionalized γ-Al2O3 as a thermally stable oxidation catalyst. Appl. Catal. B. Environ. 2018, 230, 135-44.
148. Zhang, D.; Shi, Y.; Chen, X.; Lai, J.; Huang, B.; Wang, L. High-entropy alloy metallene for highly efficient overall water splitting in acidic media. Chin. J. Catal. 2023, 45, 174-83.
149. Zhang, D.; Zhao, H.; Wu, X.; et al. Multi‐site electrocatalysts boost pH‐universal nitrogen reduction by high‐entropy alloys. Adv. Funct. Mater. 2021, 31, 2006939.
150. Gao, Y.; Jiang, M.; Yang, L.; Li, Z.; Tian, F. X.; He, Y. Recent progress of catalytic methane combustion over transition metal oxide catalysts. Front. Chem. 2022, 10, 959422.
151. Guo, Y.; Wen, M.; Li, G.; An, T. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review. Appl. Catal. B. Environ. 2021, 281, 119447.
152. Ma, L.; Geng, Y.; Chen, X.; Yan, N.; Li, J.; Schwank, J. W. Reaction mechanism of propane oxidation over Co3O4 nanorods as rivals of platinum catalysts. Chem. Eng. J. 2020, 402, 125911.
153. Liu, L.; Han, W.; Dong, F.; Feng, H.; Tang, Z. Designing ordered mesoporous confined Pt/Ti0.1AlOy catalysts for the catalytic combustion of propane. New. J. Chem. 2023, 47, 5519-33.
154. Dong, T.; Liu, W.; Ma, M.; et al. Hierarchical zeolite enveloping Pd-CeO2 nanowires: an efficient adsorption/catalysis bifunctional catalyst for low temperature propane total degradation. Chem. Eng. J. 2020, 393, 124717.
155. Wang, M.; Li, G.; Wang, S.; et al. Catalytic oxidation of propane over nanorod-like TiO2 supported Ru catalysts: structure-activity dependence and mechanistic insights. Chem. Eng. J. 2024, 481, 148344.
156. Liu, W.; Tao, J.; Zhao, Y.; et al. Boosting the deep oxidation of propane over zeolite encapsulated Rh-Mn bimetallic nanoclusters: elucidating the role of confinement and synergy effects. J. Catal. 2022, 413, 201-13.
157. Mei, X.; Zhu, X.; Zhang, Y.; et al. Decreasing the catalytic ignition temperature of diesel soot using electrified conductive oxide catalysts. Nat. Catal. 2021, 4, 1002-11.





