REFERENCES

1. Richter, A.; Burrows, J. P.; Nüss, H.; Granier, C.; Niemeier, U. Increase in tropospheric nitrogen dioxide over China observed from space. Nature 2005, 437, 129-32.

2. Han, L.; Cai, S.; Gao, M.; et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects. Chem. Rev. 2019, 119, 10916-76.

3. Wang, Y.; Xu, W.; Liu, H.; Chen, W.; Zhu, T. Catalytic removal of gaseous pollutant NO using CO: catalyst structure and reaction mechanism. Environ. Res. 2024, 246, 118037.

4. Zhang, R.; Liu, N.; Lei, Z.; Chen, B. Selective transformation of various nitrogen-containing exhaust gases toward N2 over zeolite catalysts. Chem. Rev. 2016, 116, 3658-721.

5. Beale, A. M.; Gao, F.; Lezcano-Gonzalez, I.; Peden, C. H.; Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 2015, 44, 7371-405.

6. Li, G.; Wang, B.; Ma, Z.; et al. An anti-poisoning defective catalyst without metal active sites for NH 3 -SCR via in situ stabilization. EES. Catal. 2023, 1, 134-43.

7. Feng, S.; Li, Z.; Shen, B.; et al. An overview of the deactivation mechanism and modification methods of the SCR catalysts for denitration from marine engine exhaust. J. Environ. Manage. 2022, 317, 115457.

8. Skalska, K.; Miller, J. S.; Ledakowicz, S. Trends in NOx abatement: a review. Sci. Total. Environ. 2010, 408, 3976-89.

9. Lu, Y.; Zhang, Z.; Lin, F.; Wang, H.; Wang, Y. Single-atom automobile exhaust catalysts. ChemNanoMat 2020, 6, 1659-82.

10. Liu, Y.; Zhao, J.; Lee, J. Conventional and new materials for selective catalytic reduction (SCR) of NOx. ChemCatChem 2018, 10, 1499-511.

11. Javed, M. T.; Irfan, N.; Gibbs, B. M. Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manage. 2007, 83, 251-89.

12. Heck, R. M. Catalytic abatement of nitrogen oxides-stationary applications. Catal. Today. 1999, 53, 519-23.

13. Xu, G.; Guo, X.; Cheng, X.; Yu, J.; Fang, B. A review of Mn-based catalysts for low-temperature NH3-SCR: NOx removal and H2O/SO2 resistance. Nanoscale 2021;13:7052-80.[DOI:10.1039/d1nr00248a] Caution!.

14. Xie, R.; Ma, L.; Li, Z.; Qu, Z.; Yan, N.; Li, J. Review of sulfur promotion effects on metal oxide catalysts for NOx emission control. ACS. Catal. 2021, 11, 13119-39.

15. Ye, B.; Jeong, B.; Lee, M. J.; et al. Recent trends in vanadium-based SCR catalysts for NOx reduction in industrial applications: stationary sources. Nano. Converg. 2022, 9, 51.

16. Chen, D.; Yan, Y.; Guo, A.; et al. Mechanistic insights into the promotion of low-temperature NH3-SCR catalysis by copper auto-reduction in Cu-zeolites. Appl. Catal. B. Environ. 2023, 322, 122118.

17. Zhang, N.; Wang, J.; Li, Q.; et al. Enhanced selective catalytic reduction of NO with NH3 over homoatomic dinuclear sites in defective α-Fe2O3. Chem. Eng. J. 2021, 426, 131845.

18. Liu, Q.; Yang, J.; Zhang, S.; et al. Flattened Pt clusters constructed on CeO2 for efficient selective oxidation of NH3. Appl. Catal. B. Environ. Energy. 2025, 365, 124877.

19. Zhang, N.; He, H.; Wang, D.; Li, Y. Challenges and opportunities for manganese oxides in low-temperature selective catalytic reduction of NOx with NH3: H2O resistance ability. J. Solid. State. Chem. 2020, 289, 121464.

20. Cheng, K.; Liu, J.; Zhao, Z.; Wei, Y.; Jiang, G.; Duan, A. Direct synthesis of V-W-Ti nanoparticle catalysts for selective catalytic reduction of NO with NH3. RSC. Adv. 2015, 5, 45172-83.

21. Zhang, Z.; Yang, L.; Luo, W.; An, V.; Li, J.; Liu, B. Mesh-supported V2O5-WO3/TiO2 nanosheet array catalysts for efficient removal of NOx. Tungsten 2025, 7, 100-11.

22. Hu, W.; He, J.; Liu, X.; et al. SO2- and H2O-tolerant catalytic reduction of NOx at a low temperature via engineering polymeric VOx species by CeO2. Environ. Sci. Technol. 2022, 56, 5170-8.

23. Liu, H.; Xiong, S.; Ou, H.; et al. The contradictory impact of sulfation on a CeOx/TiO2 NH3-SCR catalyst: a combined experimental and DFT study. Energy. Fuels. 2023, 37, 6674-82.

24. Bian, M.; Liu, K.; Zheng, D.; et al. Metal-free β zeolite used as an efficient NH3-SCR catalyst can achieve complete immunity to SO2: unique design strategy of sulfur-resistant catalyst. Chem. Eng. J. 2024, 481, 148563.

25. Luo, N.; Gao, F.; Liu, H.; et al. Hierarchical structured Ti-doped CeO2 stabilized CoMn2O4 for enhancing the low-temperature NH3-SCR performance within highly H2O and SO2 resistance. Appl. Catal. B. Environ. 2024, 343, 123442.

26. Chen, Y.; Liu, X.; Wang, P.; et al. Challenges and perspectives of environmental catalysis for NOx reduction. JACS. Au. 2024, 4, 2767-91.

27. Luo, W.; Yang, L.; Zhang, Z.; Cao, G.; Li, J.; Liu, B. Flexible Ti mesh-supported MnOx-CuOx/TiO2 nanosheet monolithic catalysts for low-temperature selective catalytic reduction of NOx with NH3. ACS. Appl. Nano. Mater. 2024, 7, 6262-72.

28. Chen, M.; Lian, D.; Wang, H.; et al. The catalytic mechanisms and design strategies of noble metal catalysts for selective reduction of NOx with CO. ChemCatChem 2024, 16, e202400323.

29. Chen, X.; Liu, Y.; Liu, Y.; et al. Recent advances of cu-based catalysts for NO reduction by CO under O2-containing conditions. Catalysts 2022, 12, 1402.

30. Lian, D.; Chen, M.; Wang, H.; et al. Recent advancements in Fe-based catalysts for the efficient reduction of NOx by CO. Chem. Asian. J. 2024, 19, e202400802.

31. Lian, D.; Chen, M.; Wang, H.; et al. Promising selective catalytic reduction of NOx by CO: status, challenges, and perspective. Chem. Eng. J. 2024, 496, 154242.

32. Liu, S.; Gao, J.; Xu, W.; et al. Transition metal-based catalysts for selective catalytic reduction of NO by CO: a state-of-the-art review. Chem. Eng. J. 2024, 486, 150285.

33. Wang, H.; Lian, D.; Chen, M.; et al. Enhancing the resistance of single-atom and cluster catalysts in CO-SCR to water, sulfur, and oxygen via structural engineering. Chem. Eng. J. 2024, 500, 157326.

34. Du, Y.; Gao, F.; Zhou, Y.; Yi, H.; Tang, X.; Qi, Z. Recent advance of CuO-CeO2 catalysts for catalytic elimination of CO and NO. J. Environ. Chem. Eng. 2021, 9, 106372.

35. Wang, J.; Gao, F.; Dang, P.; et al. Recent advances in NO reduction with CO over copper-based catalysts: reaction mechanisms, optimization strategies, and anti-inactivation measures. Chem. Eng. J. 2022, 450, 137374.

36. Yang, Y.; Yang, L.; Cao, G.; et al. Monolithic CuMnO2 -nanosheet-based catalysts in situ grown on stainless steel mesh for selective catalytic reduction of NO with CO. ACS. Appl. Nano. Mater. 2023, 6, 4803-11.

37. Dong, C.; Li, Y.; Cheng, D.; et al. Supported metal clusters: fabrication and application in heterogeneous catalysis. ACS. Catal. 2020, 10, 11011-45.

38. Li, X.; Yang, X.; Huang, Y.; Zhang, T.; Liu, B. Supported noble-metal single atoms for heterogeneous catalysis. Adv. Mater. 2019, 31, e1902031.

39. Yan, H.; Zhang, N.; Wang, D. Highly efficient CeO2-supported noble-metal catalysts: from single atoms to nanoclusters. Chem. Catal. 2022, 2, 1594-623.

40. Leybo, D.; Etim, U. J.; Monai, M.; Bare, S. R.; Zhong, Z.; Vogt, C. Metal-support interactions in metal oxide-supported atomic, cluster, and nanoparticle catalysis. Chem. Soc. Rev. 2024, 53, 10450-90.

41. Zeng, L.; Cheng, K.; Sun, F.; et al. Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts. Science 2024, 383, 998-1004.

42. Qiao, B.; Wang, A.; Yang, X.; et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634-41.

43. Yang, X. F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740-8.

44. Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981-5079.

45. Hannagan, R. T.; Giannakakis, G.; Réocreux, R.; et al. First-principles design of a single-atom-alloy propane dehydrogenation catalyst. Science 2021, 372, 1444-7.

46. Tao, F.; Li, Y. A new type of catalysts: catalysts of singly dispersed bimetallic sites. Trends. Chem. 2023, 5, 486-99.

47. Li, Y.; Li, Y.; Sun, H.; et al. Current status and perspectives of dual-atom catalysts towards sustainable energy utilization. Nanomicro. Lett. 2024, 16, 139.

48. Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. The progress and outlook of metal single-atom-site catalysis. J. Am. Chem. Soc. 2022, 144, 18155-74.

49. Liang, X.; Yao, S.; Li, Z.; Li, Y. Challenge and chance of single atom catalysis: the development and application of the single atom site catalysts toolbox. Acc. Chem. Res. 2025, 58, 1607-19.

50. Lang, R.; Xi, W.; Liu, J. C.; et al. Non defect-stabilized thermally stable single-atom catalyst. Nat. Commun. 2019, 10, 234.

51. Fonseca, J.; Lu, J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS. Catal. 2021, 11, 7018-59.

52. Chang, J.; Jing, W.; Yong, X.; et al. Synthesis of ultrahigh-metal-density single-atom catalysts via metal sulfide-mediated atomic trapping. Nat. Synth. 2024, 3, 1427-38.

53. Ji, S.; Chen, Y.; Wang, X.; Zhang, Z.; Wang, D.; Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900-55.

54. Lv, H.; Guo, W.; Chen, M.; Zhou, H.; Wu, Y. Rational construction of thermally stable single atom catalysts: From atomic structure to practical applications. Chin. J. Catal. 2022, 43, 71-91.

55. Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523-38.

56. Web of science all databases. Available from: https://www.webofscience.com (accessed 2025-8-7).

57. Zhang, N.; He, C.; Jing, Y.; et al. Enhanced nitrous oxide decomposition on zirconium-supported rhodium catalysts by iridium augmentation. Environ. Sci. Technol. 2025, 59, 1598-607.

58. Yang, L.; Li, X.; He, H.; et al. Enhanced low-temperature activity of Rh-Pt alloy clusters supported on TiO2/Ti nanosheets for selective catalytic reduction of NO by CO. Appl. Surf. Sci. 2025, 695, 162824.

59. Yang, L.; Li, X.; Li, S.; Li, J.; Liu, B. Cooperative Rh-Ov-Co sites boosting the wide reaction temperature window for NO reduction with CO. J. Environ. Chem. Eng. 2025, 13, 115994.

60. Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: catalyst design and activity test. Appl. Catal. B. Environ. 2018, 239, 485-501.

61. He, Y.; Liu, J.; Zhang, G.; et al. Interfacial effects promote the catalytic performance of CuCoO2-CeO2 metal oxides for the selective reduction of NO by CO. Chem. Eng. J. 2023, 465, 142856.

62. Zhang, L.; Yao, X.; Lu, Y.; et al. Effect of precursors on the structure and activity of CuO-CoOx/γ-Al2O3 catalysts for NO reduction by CO. J. Colloid. Interface. Sci. 2018, 509, 334-45.

63. Xu, Z.; Li, Y.; Lin, Y.; Zhu, T. A review of the catalysts used in the reduction of NO by CO for gas purification. Environ. Sci. Pollut. Res. Int. 2020, 27, 6723-48.

64. Gholami, Z.; Luo, G.; Gholami, F.; Yang, F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: a review. Catal. Rev. 2021, 63, 68-119.

65. Chen, K.; Han, X.; Wang, Q.; Liu, K.; Yang, X.; Zhang, Y. Enhanced CO-SCR denitration on supported Rh-Mn/CoAlOx catalysts through Rh-Mn interaction. Appl. Surf. Sci. 2024, 665, 160357.

66. Fernández, E.; Liu, L.; Boronat, M.; Arenal, R.; Concepcion, P.; Corma, A. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS. Catal. 2019, 9, 11530-41.

67. Pan, Y.; Li, N.; Li, K.; et al. Enhanced low-temperature behavior of selective catalytic reduction of NOx by CO on Fe-based catalyst with looping oxygen vacancy. Chem. Eng. J. 2023, 461, 141814.

68. Zang, P.; Liu, J.; Zhang, G.; et al. Insights into the highly activity CuMgFe oxides for the selective catalytic reduction of NO by CO: structure-activity relationships and K/SO2 poisoning mechanism. Fuel 2023, 331, 125800.

69. Li, R.; Li, A.; Li, J.; Wang, Y.; Liu, Z. Unveiling the significant promoting effect of SO2 on Ir/SiO2 catalyst for the CO-SCR of NOx in the presence of O2. J. Catal. 2024, 430, 115336.

70. Bai, Y.; Miao, C.; Deng, S.; Wang, H.; Wu, Z. Unveiling the effect of SO2 on CO selective catalytic reduction of NO in the presence of O2 over IrRb@SBA-15 catalyst. Sep. Purif. Technol. 2025, 352, 128039.

71. Zhang, N.; Ye, C.; Yan, H.; et al. Single-atom site catalysts for environmental catalysis. Nano. Res. 2020, 13, 3165-82.

72. Liu, H.; Wang, Y.; Xu, W.; et al. Unraveling the synergistic mechanism of Ir species with various electron densities over an Ir/ZSM-5 catalyst enables high-efficiency NO reduction by CO. Environ. Sci. Technol. 2024, 58, 12082-90.

73. Sun, Y.; Wu, Y.; Bai, Y.; Wu, X.; Wang, H.; Wu, Z. High performance iridium loaded on natural halloysite nanotubes for CO-SCR reaction. Fuel 2024, 357, 129938.

74. Jiang, R.; Liu, S.; Li, L.; et al. Single Ir atoms anchored on ordered mesoporous WO3 are highly efficient for the selective catalytic reduction of NO with CO under oxygen-rich conditions. ChemCatChem 2021, 13, 1834-46.

75. Inomata, H.; Shimokawabe, M.; Kuwana, A.; Arai, M. Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: influence of preparation variables on the catalytic performance. Appl. Catal. B. Environ. 2008, 84, 783-9.

76. Nanba, T.; Shinohara, S.; Masukawa, S.; Uchisawa, J.; Ohi, A.; Obuchi, A. Formation of active sites on Ir/WO3-SiO2 for selective catalytic reduction of NO by CO. Appl. Catal. B. Environ. 2008, 84, 420-5.

77. Wang, J.; Gao, F.; Yi, H.; et al. Strong Ir-W interaction boosts CO-SCR denitration over supported Ir-based catalysts and influential mechanism of oxygen. Sep. Purif. Technol. 2023, 325, 124684.

78. Jiang, D.; Yao, Y.; Li, T.; et al. Tailoring the local environment of platinum in single-atom Pt1/CeO2 catalysts for robust low-temperature CO oxidation. Angew. Chem. Int. Ed. Engl. 2021, 60, 26054-62.

79. Ji, Y.; Chen, X.; Liu, S.; et al. Tailoring the electronic structure of single Ag atoms in Ag/WO3 for efficient NO reduction by CO in the presence of O2. ACS. Catal. 2023, 13, 1230-9.

80. Roy, S.; Hegde, M. Pd ion substituted CeO2: a superior de-NO catalyst to Pt or Rh metal ion doped ceria. Catal. Commun. 2008, 9, 811-5.

81. Roy, S.; Marimuthu, A.; Hegde, M.; Madras, G. High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99. Appl. Cataly. B. Environ. 2007, 73, 300-10.

82. Roy, S.; Marimuthu, A.; Hegde, M.; Madras, G. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-δ: catalytic and kinetic studies. Appl. Catal. B. Environ. 2007, 71, 23-31.

83. Xu, Q.; Cheng, X.; Zhang, N.; et al. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano. Res. 2023, 16, 8882-92.

84. Ikemoto, S.; Muratsugu, S.; Koitaya, T.; Tada, M. Chromium oxides as structural modulators of Rhodium dispersion on ceria to generate active sites for NO reduction. ACS. Catal. 2022, 12, 431-41.

85. Cai, D.; Zhang, J.; Kong, Z.; Li, Z. Synergistic effect of single-atom catalysts and vacancies of support for versatile catalytic applications. ChemCatChem 2024, 16, e202301414.

86. Luo, L.; Fu, L.; Liu, H.; et al. Synergy of Pd atoms and oxygen vacancies on In2O3 for methane conversion under visible light. Nat. Commun. 2022, 13, 2930.

87. Bai, Y.; Zong, X.; Jin, C.; Wang, S.; Wang, S. Synergy of single-atom Fe1 and Ce-Ov sites on mesoporous CeO2-Al2O3 for efficient selective catalytic reduction of NO with CO. ACS. Catal. 2024, 14, 827-36.

88. Song, I.; Wang, Y.; Szanyi, J.; Khivantsev, K. Co-existence of atomically dispersed Ru and Ce3+ sites is responsible for excellent low temperature N2O reduction activity of Ru/CeO2. Appl. Cataly. B. Environ. 2024, 343, 123487.

89. Song, I.; Kovarik, L.; Engelhard, M. H.; Szanyi, J.; Wang, Y.; Khivantsev, K. Developing robust ceria-supported catalysts for catalytic NO reduction and CO/hydrocarbon oxidation. ACS. Catal. 2024, 14, 18247-55.

90. Wu, J.; Li, Y.; Yang, Y.; et al. A heterogeneous single Cu catalyst of Cu atoms confined in the spinel lattice of MgAl2O4 with good catalytic activity and stability for NO reduction by CO. J. Mater. Chem. A. 2019, 7, 7202-12.

91. Asokan, C.; Yang, Y.; Dang, A.; Getsoian, A.; Christopher, P. Low-temperature ammonia production during NO reduction by CO Is due to atomically dispersed rhodium active sites. ACS. Catal. 2020, 10, 5217-22.

92. Yang, C.; Garl, C. W. Infrared studies of carbon monoxide chemisorbed on Rhodium. J. Phys. Chem. 1957, 61, 1504-12.

93. Matsubu, J. C.; Yang, V. N.; Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 2015, 137, 3076-84.

94. Wu, D.; Liu, S.; Zhong, M.; et al. Nature and dynamic evolution of Rh single atoms trapped by CeO2 in CO hydrogenation. ACS. Catal. 2022, 12, 12253-67.

95. Khivantsev, K.; Vargas, C. G.; Tian, J.; et al. Economizing on precious metals in three-way catalysts: thermally stable and highly active single-atom Rhodium on ceria for NO abatement under dry and industrially relevant conditions*. Angew. Chem. Int. Ed. Engl. 2021, 60, 391-8.

96. Khivantsev, K.; Jaegers, N. R.; Aleksandrov, H. A.; et al. Single Ru(II) ions on ceria as a highly active catalyst for abatement of NO. J. Am. Chem. Soc. 2023, 145, 5029-40.

97. Tian, J.; Khivantsev, K.; Lu, Y.; et al. NO reduction with CO on low-loaded platinum-group metals (Rh, Ru, Pd, Pt, and Ir) atomically dispersed on ceria. ChemCatChem 2024, 16, e202301227.

98. Wang, T.; Hu, J.; Ouyang, R.; et al. Nature of metal-support interaction for metal catalysts on oxide supports. Science 2024, 386, 915-20.

99. S.; Fung, S.; Garten, R. L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 1978, 100, 170-5.

100. Tauster, S. Strong metal-support interactions: occurrence among the binary oxides of groups IIA? J. Catal. 1978, 55, 29-35.

101. S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong interactions in supported-metal catalysts. Science 1981, 211, 1121-5.

102. Tang, Y.; Zhao, S.; Long, B.; Liu, J.; Li, J. On the Nature of support effects of metal dioxides MO2 (M = Ti, Zr, Hf, Ce, Th) in single-atom gold catalysts: importance of quantum primogenic effect. J. Phys. Chem. C. 2016, 120, 17514-26.

103. Adachi, .; Y, . ; Brndiar, J.; Konôpka, M.; et al. Tip-activated single-atom catalysis: CO oxidation on Au adatom on oxidized rutile TiO2 surface. Sci. Adv. 2023, 9, eadi4799.

104. Wan, Q.; Fung, V.; Lin, S.; Wu, Z.; Jiang, D. Perovskite-supported Pt single atoms for methane activation. J. Mater. Chem. A. 2020, 8, 4362-8.

105. Ji, Y.; Liu, S.; Song, S.; et al. Negatively charged single-atom Pt catalyst shows superior SO2 tolerance in NOx reduction by CO. ACS. Catal. 2023, 13, 224-36.

106. Gloag, L.; Somerville, S. V.; Gooding, J. J.; Tilley, R. D. Co-catalytic metal-support interactions in single-atom electrocatalysts. Nat. Rev. Mater. 2024, 9, 173-89.

107. Ji, Y.; Liu, S.; Zhu, H.; et al. Isolating contiguous Ir atoms and forming Ir-W intermetallics with negatively charged Ir for efficient NO reduction by CO. Adv. Mater. 2022, 34, e2205703.

108. Jia, C.; Wang, Q.; Yang, J.; et al. Toward rational design of dual-metal-site catalysts: catalytic descriptor exploration. ACS. Catal. 2022, 12, 3420-9.

109. Hu, Y.; Li, Z.; Li, B.; Yu, C. Recent Progress of diatomic catalysts: general design fundamentals and diversified catalytic applications. Small 2022, 18, e2203589.

110. Liu, W.; Long, G.; Xiang, Z.; et al. Extremely active and robust Ir-Mn dual-atom electrocatalyst for oxygen evolution reaction by oxygen-oxygen radical coupling mechanism. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411014.

111. Wang, B.; Yang, X.; Xie, C.; et al. A General metal ion recognition strategy to mediate dual-atomic-site catalysts. J. Am. Chem. Soc. 2024, 146, 24945-55.

112. Zhang, Y. X.; Zhang, S.; Huang, H.; et al. General synthesis of a diatomic catalyst library via a macrocyclic precursor-mediated approach. J. Am. Chem. Soc. 2023, 145, 4819-27.

113. Sun, X.; Qiu, Y.; Jiang, B.; et al. Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries. Nat. Commun. 2023, 14, 291.

114. Hao, Q.; Zhong, H.; Wang, J.; et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 2022, 1, 719-28.

115. Jiang, S.; Xue, J.; Liu, T.; et al. Visualization of the distance-dependent synergistic interaction in heterogeneous dual-site catalysis. J. Am. Chem. Soc. 2024, 146, 29084-93.

116. Li, L.; Yuan, K.; Chen, Y. Breaking the scaling relationship limit: from single-atom to dual-atom catalysts. Acc. Mater. Res. 2022, 3, 584-96.

117. Chen, Y.; Lin, J.; Pan, Q.; Liu, X.; Ma, T.; Wang, X. Inter-metal interaction of dual-atom catalysts in heterogeneous catalysis. Angew. Chem. Int. Ed. Engl. 2023, 62, e202306469.

118. Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78-110.

119. Wang, H.; Bootharaju, M. S.; Kim, J. H.; et al. Synergistic interactions of neighboring platinum and iron atoms enhance reverse water-gas shift reaction performance. J. Am. Chem. Soc. 2023, 145, 2264-70.

120. Fu, J.; Dong, J.; Si, R.; et al. Synergistic effects for enhanced catalysis in a dual single-atom catalyst. ACS. Catal. 2021, 11, 1952-61.

121. Huang, F.; Peng, M.; Chen, Y.; et al. Low-temperature acetylene semi-hydrogenation over the Pd1-Cu1 dual-atom catalyst. J. Am. Chem. Soc. 2022, 144, 18485-93.

122. Tan, Z.; Haneda, M.; Kitagawa, H.; Huang, B. Slow synthesis methodology-directed immiscible octahedral Pdx Rh1-x dual-atom-site catalysts for superior three-way catalytic activities over Rh. Angew. Chem. Int. Ed. Engl. 2022, 61, e202202588.

123. Zhao, X.; Wang, F.; Kong, X. P.; Fang, R.; Li, Y. Dual-metal hetero-single-atoms with different coordination for efficient synergistic catalysis. J. Am. Chem. Soc. 2021, 143, 16068-77.

124. Liu, Z.; Wen, Y.; Wang, Z.; et al. Synergistic dual-atom catalysts on ceria for enhanced CO preferential oxidation: insights from high-throughput first-principles microkinetics. ACS. Catal. 2025, 15, 664-75.

125. Tang, X.; Zhang, Y.; Tang, S.; Lützenkirchen-hecht, D.; Yuan, K.; Chen, Y. Structural and chemical origin of dual-atom sites for enhanced oxygen electroreduction. ACS. Catal. 2024, 14, 13065-80.

126. Han, A.; Wang, X.; Tang, K.; et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem. Int. Ed. Engl. 2021, 60, 19262-71.

127. Gao, Y.; Liu, B.; Wang, D. Microenvironment engineering of single/dual-atom catalysts for electrocatalytic application. Adv. Mater. 2023, 35, e2209654.

128. Kim, J.; Choi, S.; Cho, J.; Kim, S. Y.; Jang, H. W. Toward multicomponent single-atom catalysis for efficient electrochemical energy conversion. ACS. Mater. Au. 2022, 2, 1-20.

129. Ding, Y.; Shi, Y.; Xiong, W.; et al. Insights into N-coordinated bimetallic site synergy during no selective catalytic reduction by CO. ACS. Appl. Mater. Interfaces. 2021, 13, 57182-92.

130. Zhou, X.; Han, K.; Li, K.; et al. Dual-site single-atom catalysts with high performance for three-way catalysis. Adv. Mater. 2022, 34, e2201859.

131. Vogt, C.; Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 2022, 6, 89-111.

132. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-88.

133. Liu, L.; Corma, A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 2023, 123, 4855-933.

134. Jiang, T.; Li, Y.; Tang, Y.; et al. Breaking continuously packed bimetallic sites to singly dispersed on nonmetallic support for efficient hydrogen production. ACS. Appl. Mater. Interfaces. 2024, 16, 21757-70.

135. Zhang, S.; Nguyen, L.; Liang, J. X.; et al. Catalysis on singly dispersed bimetallic sites. Nat. Commun. 2015, 6, 7938.

136. Liu, N.; Ma, X.; Li, J.; Xiao, H. Singly Dispersed bimetallic sites as stable and efficient single-cluster catalysts for activating N2 and CO2. J. Phys. Chem. C. 2021, 125, 27192-8.

137. Nguyen, L.; Zhang, S.; Wang, L.; et al. Reduction of nitric oxide with hydrogen on catalysts of singly dispersed bimetallic sites Pt1Com and Pd1Con. ACS. Catal. 2016, 6, 840-50.

138. Ma, X.; Yang, Y.; Xu, L.; Xiao, H.; Yao, W.; Li, J. Theoretical investigation on hydrogenation of dinitrogen triggered by singly dispersed bimetallic sites. J. Mater. Chem. A. 2022, 10, 6146-52.

139. Zhang, S.; Shan, J. J.; Zhu, Y.; et al. WGS catalysis and in situ studies of CoO1-x, PtCon/Co3O4, and PtmCom’/CoO1-x nanorod catalysts. J. Am. Chem. Soc. 2013, 135, 8283-93.

140. Nguyen, L.; Zhang, S.; Tan, L.; Tang, Y.; Liu, J.; Tao, F. F. Ir1Znn bimetallic site for efficient production of hydrogen from methanol. ACS. Sustainable. Chem. Eng. 2019, 7, 18793-800.

141. Yang, H.; Yu, R.; Fang, Y.; et al. Singly dispersed Ir1Ti3 bimetallic site for partial oxidation of methane at high temperature. Appl. Surf. Sci. 2022, 599, 153863.

142. Jin, X.; Wen, H.; Liu, J. Insight into the reaction mechanism of the reduction of NO by H2 on the singly dispersed bimetallic Pt(Rh)Co4/Co3O4 catalysts: a first-principles study. J. Phys. Chem. C. 2020, 124, 9908-16.

143. Wang, P.; Yang, M.; Liao, H.; et al. Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation. Cell. Reports. Physical. Science. 2023, 4, 101311.

144. Ma, X. L.; Liu, J. C.; Xiao, H.; Li, J. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. J. Am. Chem. Soc. 2018, 140, 46-9.

145. Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569-88.

146. Jin, Z.; Xu, Y.; Chhetri, M.; et al. Recent developments of single atom alloy catalysts for electrocatalytic hydrogenation reactions. Chem. Eng. J. 2024, 491, 152072.

147. Papanikolaou, K. G.; Darby, M. T.; Stamatakis, M. Engineering the surface architecture of highly dilute alloys: an ab initio monte Carlo approach. ACS. Catal. 2020, 10, 1224-36.

148. Papanikolaou, K. G.; Darby, M. T.; Stamatakis, M. CO-induced aggregation and segregation of highly dilute alloys: a density functional theory study. J. Phys. Chem. C. 2019, 123, 9128-38.

149. Ouyang, M.; Papanikolaou, K. G.; Boubnov, A.; et al. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat. Commun. 2021, 12, 1549.

150. Pei, G. X.; Liu, X. Y.; Yang, X.; et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS. Catal. 2017, 7, 1491-500.

151. Zhang, S.; Wang, R.; Zhang, X.; Zhao, H. Recent advances in single-atom alloys: preparation methods and applications in heterogeneous catalysis. RSC. Adv. 2024, 14, 3936-51.

152. Schumann, J.; Stamatakis, M.; Michaelides, A.; Réocreux, R. Ten-electron count rule for the binding of adsorbates on single-atom alloy catalysts. Nat. Chem. 2024, 16, 749-54.

153. Liu, J.; Lucci, F. R.; Yang, M.; et al. Tackling CO poisoning with single-atom alloy catalysts. J. Am. Chem. Soc. 2016, 138, 6396-9.

154. Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Single atom alloy: an emerging atomic site material for catalytic applications. Nano. Today. 2020, 34, 100917.

155. Bunting, R. J.; Wodaczek, F.; Torabi, T.; Cheng, B. Reactivity of single-atom alloy nanoparticles: modeling the dehydrogenation of propane. J. Am. Chem. Soc. 2023, 145, 14894-902.

156. Berger, F.; Schumann, J.; Réocreux, R.; Stamatakis, M.; Michaelides, A. Bringing molecules together: synergistic coadsorption at dopant sites of single atom alloys. J. Am. Chem. Soc. 2024, 146, 28119-30.

157. Bai, Y.; Gao, S.; Sun, Y.; et al. Insight into the mechanism of selective catalytic reduction of NO by CO over a bimetallic IrRu/ZSM-5 catalyst in the absence/presence of O2 by Isotopic C13O tracing methods. Environ. Sci. Technol. 2023, 57, 9105-14.

158. Song, J. H.; Park, D. C.; You, Y.; et al. Kinetic and DRIFTS studies of IrRu/Al2O3 catalysts for lean NOx reduction by CO at low temperature. Catal. Sci. Technol. 2020, 10, 8182-95.

159. Arshad, M. W.; Kim, D. H.; You, Y.; Kim, S. M.; Heo, I.; Kim, S. K. A first-principles understanding of the CO-assisted NO reduction on the IrRu/Al2O3 catalyst under O2-rich conditions. Catal. Sci. Technol. 2021, 11, 4353-66.

160. Song, J. H.; Park, D. C.; You, Y.; Chang, T. S.; Heo, I.; Kim, D. H. Lean NOx reduction by CO at low temperature over bimetallic IrRu/Al2O3 catalysts with different Ir : Ru ratios. Catal. Sci. Technol. 2020, 10, 2120-36.

161. Papanikolaou, K. G.; Stamatakis, M. On the behaviour of structure-sensitive reactions on single atom and dilute alloy surfaces. Catal. Sci. Technol. 2020, 10, 5815-28.

162. Beniya, A.; Ikuta, Y.; Isomura, N.; Hirata, H.; Watanabe, Y. Synergistic promotion of NO-CO reaction cycle by gold and nickel elucidated using a well-defined model bimetallic catalyst surface. ACS. Catal. 2017, 7, 1369-77.

163. Wen, H.; Huai, L.; Jin, X.; Liu, J. Mechanism of nitric oxide reduction by hydrogen on Ni(110) and Ir/Ni(110): first principles and microkinetic modeling. J. Phys. Chem. C. 2019, 123, 4825-36.

164. Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloys as a reductionist approach to the rational design of heterogeneous catalysts. Acc. Chem. Res. 2019, 52, 237-47.

165. Xing, F.; Jeon, J.; Toyao, T.; Shimizu, K. I.; Furukawa, S. A Cu-Pd single-atom alloy catalyst for highly efficient NO reduction. Chem. Sci. 2019, 10, 8292-8.

166. Darby, M. T.; Stamatakis, M.; Michaelides, A.; Sykes, E. C. H. Lonely atoms with special gifts: breaking linear scaling relationships in heterogeneous catalysis with single-atom alloys. J. Phys. Chem. Lett. 2018, 9, 5636-46.

167. Jeon, J.; Kon, K. I.; Toyao, T.; Shimizu, K. I.; Furukawa, S. Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chem. Sci. 2019, 10, 4148-62.

168. Jeon, J.; Ham, H.; Xing, F.; Nakaya, Y.; Shimizu, K.; Furukawa, S. PdIn-based pseudo-binary alloy as a catalyst for NOx removal under lean conditions. ACS. Catal. 2020, 10, 11380-4.

169. Zhang, J.; Wang, M.; Gao, Z.; et al. Importance of species heterogeneity in supported metal catalysts. J. Am. Chem. Soc. 2022, 144, 5108-15.

170. Luo, G.; Song, M.; Zhang, Q.; et al. Advances of synergistic electrocatalysis between single atoms and nanoparticles/clusters. Nanomicro. Lett. 2024, 16, 241.

171. Su, D.; Wang, Y.; Sheng, H.; et al. Efficient amine-assisted CO2 hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters. Nat. Commun. 2025, 16, 590.

172. Mo, F.; Song, C.; Zhou, Q.; et al. The optimized Fenton-like activity of Fe single-atom sites by Fe atomic clusters-mediated electronic configuration modulation. Proc. Natl. Acad. Sci. 2023, 120, e2300281120.

173. Lan, G.; Ye, Q.; Zhu, Y.; Tang, H.; Han, W.; Li, Y. Single-site Au/carbon catalysts with single-atom and Au nanoparticles for acetylene hydrochlorination. ACS. Appl. Nano. Mater. 2020, 3, 3004-10.

174. Jiang, R.; Li, Q.; Zheng, X.; et al. Metal-organic framework-derived Co nanoparticles and single atoms as efficient electrocatalyst for pH universal hydrogen evolution reaction. Nano. Res. 2022, 15, 7917-24.

175. Gao, M.; Tian, F.; Guo, Z.; et al. Mutual-modification effect in adjacent Pt nanoparticles and single atoms with sub-nanometer inter-site distances to boost photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 446, 137127.

176. Zeng, Y.; Liang, J.; Li, C.; et al. Regulating catalytic properties and thermal stability of Pt and PtCo intermetallic fuel-cell catalysts via strong coupling effects between single-metal site-rich carbon and Pt. J. Am. Chem. Soc. 2023, 145, 17643-55.

177. Zhang, B.; Wang, J.; Liu, G.; et al. A strongly coupled Ru-CrOx cluste-cluster heterostructure for efficient alkaline hydrogen electrocatalysis. Nat. Catal. 2024, 7, 441-51.

178. Liu, S.; Ji, Y.; Liu, B.; et al. Co single atoms and CoOx nanoclusters anchored on Ce0.75Zr0.25O2 synergistically boosts the no reduction by CO. Adv. Funct. Mater. 2023, 33, 2303297.

179. Kuai, L.; Chen, Z.; Liu, S.; et al. Titania supported synergistic palladium single atoms and nanoparticles for room temperature ketone and aldehydes hydrogenation. Nat. Commun. 2020, 11, 48.

180. Yang, L.; Wang, J.; Liu, T.; et al. Synergistic catalysis of Rh single-atom and clusters supported on TiO2 nanosheet array for highly efficient removal of CO and NOx. Small. Struct. 2024, 5, 2400230.

181. Ren, W.; Tan, X.; Jia, C.; et al. Electronic regulation of nickel single atoms by confined nickel nanoparticles for energy-efficient CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203335.

182. He, Q.; Zhou, Y.; Shou, H.; et al. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv. Mater. 2022, 34, e2110604.

183. Liu, A.; Liu, L.; Cao, Y.; et al. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS. Catal. 2019, 9, 9840-51.

184. Mitchell, S.; Pérez-ramírez, J. Atomically precise control in the design of low-nuclearity supported metal catalysts. Nat. Rev. Mater. 2021, 6, 969-85.

185. Hsu, C. S.; Wang, J.; Chu, Y. C.; et al. Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction. Nat. Commun. 2023, 14, 5245.

186. Ye, C.; Shan, J.; Zhu, C.; et al. Spatial structure engineering of interactive single platinum sites toward enhanced electrocatalytic hydrogen evolution. Adv. Energy. Mater. 2023, 13, 2302190.

187. Li, L.; Zhang, N. Atomic dispersion of bulk/nano metals to atomic-sites catalysts and their application in thermal catalysis. Nano. Res. 2023, 16, 6380-401.

188. Li, R.; Zhao, J.; Liu, B.; Wang, D. Atomic distance engineering in metal catalysts to regulate catalytic performance. Adv. Mater. 2024, 36, e2308653.

189. Feng, C.; Zhang, Z.; Wang, D.; et al. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J. Am. Chem. Soc. 2022, 144, 9271-9.

190. Zhang, Z.; Jia, C.; Ma, P.; et al. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution. Nat. Commun. 2024, 15, 1767.

191. Yan, Y.; Yu, R.; Liu, M.; et al. General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy. Nat. Commun. 2025, 16, 334.

192. Jiang, D.; Wan, G.; Halldin, Stenlid. J.; et al. Dynamic and reversible transformations of subnanometre-sized palladium on ceria for efficient methane removal. Nat. Catal. 2023, 6, 618-27.

193. Jiang, D.; Wan, G.; García-vargas, C. E.; et al. Elucidation of the active sites in single-atom Pd1/CeO2 catalysts for low-temperature CO oxidation. ACS. Catal. 2020, 10, 11356-64.

194. Tan, W.; Xie, S.; Le, D.; et al. Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity. Nat. Commun. 2022, 13, 7070.

195. Zhang, L.; Yang, X.; Lin, J.; et al. On the coordination environment of single-atom catalysts. Acc. Chem. Res. 2025, 58, 1878-92.

196. DeRita, L.; Dai, S.; Lopez-Zepeda, K.; et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 2017, 139, 14150-65.

197. Lin, L.; Chen, Z.; Chen, W. Single atom catalysts by atomic diffusion strategy. Nano. Res. 2021, 14, 4398-416.

198. Han, L.; Cheng, H.; Liu, W.; et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 2022, 21, 681-8.

199. Zhou, H.; Zhao, Y.; Gan, J.; et al. Cation-exchange induced precise regulation of single copper site triggers room-temperature oxidation of benzene. J. Am. Chem. Soc. 2020, 142, 12643-50.

200. Kaiser, S. K.; Chen, Z.; Faust, Akl. D.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703-809.

201. Xing, L.; Jin, Y.; Weng, Y.; et al. Top-down synthetic strategies toward single atoms on the rise. Matter 2022, 5, 788-807.

202. Jones, J.; Xiong, H.; DeLaRiva, A. T.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-4.

203. Hu, Y.; Li, B.; Yu, C.; Fang, H.; Li, Z. Mechanochemical preparation of single atom catalysts for versatile catalytic applications: a perspective review. Materials. Today. 2023, 63, 288-312.

204. Gan, T.; Liu, Y.; He, Q.; Zhang, H.; He, X.; Ji, H. Facile synthesis of kilogram-scale Co-alloyed Pt single-atom catalysts via ball milling for hydrodeoxygenation of 5-hydroxymethylfurfural. ACS. Sustainable. Chem. Eng. 2020, 8, 8692-9.

205. Gan, T.; He, Q.; Zhang, H.; et al. Unveiling the kilogram-scale gold single-atom catalysts via ball milling for preferential oxidation of CO in excess hydrogen. Chem. Eng. J. 2020, 389, 124490.

206. Zhang, H.; Zhang, X.; Shi, S.; et al. Highly efficient fabrication of kilogram-scale palladium single-atom catalysts for the Suzuki-Miyaura cross-coupling reaction. ACS. Appl. Mater. Interfaces. 2022, 14, 53755-60.

207. He, X.; Deng, Y.; Zhang, Y.; et al. Mechanochemical kilogram-scale synthesis of noble metal single-atom catalysts. Cell. Rep. Phys. Sci. 2020, 1, 100004.

208. Qu, Y.; Li, Z.; Chen, W.; et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781-6.

209. Tang, B.; Zhou, Y.; Ji, Q.; et al. A Janus dual-atom catalyst for electrocatalytic oxygen reduction and evolution. Nat. Synth. 2024, 3, 878-90.

210. Hai, X.; Xi, S.; Mitchell, S.; et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174-81.

211. Wang, Y.; Li, C.; Han, X.; et al. General negative pressure annealing approach for creating ultra-high-loading single atom catalyst libraries. Nat. Commun. 2024, 15, 5675.

212. Al-Hilfi, S. H.; Jiang, X.; Heuer, J.; et al. Single-atom catalysts through pressure-controlled metal diffusion. J. Am. Chem. Soc. 2024, 146, 19886-95.

213. Xiong, Y.; Sun, W.; Xin, P.; et al. Gram-scale synthesis of high-loading single-atomic-site Fe catalysts for effective epoxidation of styrene. Adv. Mater. 2020, 32, e2000896.

214. He, X.; Zhang, H.; Zhang, X.; et al. Building up libraries and production line for single atom catalysts with precursor-atomization strategy. Nat. Commun. 2022, 13, 5721.

215. Liu, P.; Zhao, Y.; Qin, R.; et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797-801.

216. Keil, F. J. Molecular modelling for reactor design. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 201-27.

217. Yu, Z.; Ji, N.; Li, X.; et al. Kinetics driven by hollow nanoreactors: an opportunity for controllable catalysis. Angew. Chem. Int. Ed. Engl. 2023, 62, e202213612.

218. Sarvestani, M.; Norouzi, O.; Di Maria, F.; Dutta, A. From catalyst development to reactor design: a comprehensive review of methanol synthesis techniques. Energy. Convers. Manag. 2024, 302, 118070.

219. Zheng, R.; Liu, Z.; Wang, Y.; Xie, Z. Industrial catalysis: strategies to enhance selectivity. Chin. J. Catal. 2020, 41, 1032-8.

220. Guo, Y.; Wang, M.; Zhu, Q.; Xiao, D.; Ma, D. Ensemble effect for single-atom, small cluster and nanoparticle catalysts. Nat. Catal. 2022, 5, 766-76.

221. Wang, C.; Wang, Y.; Ge, J.; Xie, Z. Reaction: industrial perspective on single-atom catalysis. Chem 2019, 5, 2736-7.

222. Hülsey, M. J.; Zhang, J.; Yan, N. Harnessing the wisdom in colloidal chemistry to make stable single-atom catalysts. Adv. Mater. 2018, 30, e1802304.

223. Hu, Y.; Li, H.; Li, Z.; et al. Progress in batch preparation of single-atom catalysts and application in sustainable synthesis of fine chemicals. Green. Chem. 2021, 23, 8754-94.

224. Xiong, H.; Lin, S.; Goetze, J.; et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. Engl. 2017, 56, 8986-91.

225. Guo, W.; Wang, Z.; Wang, X.; Wu, Y. General design concept for single-atom catalysts toward heterogeneous catalysis. Adv. Mater. 2021, 33, e2004287.

226. Jin, H.; Song, W.; Cao, C. An overview of metal density effects in single-atom catalysts for thermal catalysis. ACS. Catal. 2023, 13, 15126-42.

227. Garole, D. J.; Hossain, R.; Garole, V. J.; Sahajwalla, V.; Nerkar, J.; Dubal, D. P. Recycle, recover and repurpose strategy of spent Li-ion batteries and catalysts: current status and future opportunities. ChemSusChem 2020, 13, 3079-100.

228. Zhou, H.; Liu, T.; Zhao, X.; et al. A supported nickel catalyst stabilized by a surface digging effect for efficient methane oxidation. Angew. Chem. Int. Ed. Engl. 2019, 58, 18388-93.

229. Fu, N.; Liang, X.; Wang, X.; et al. Controllable conversion of platinum nanoparticles to single atoms in Pt/CeO2 by laser ablation for efficient CO oxidation. J. Am. Chem. Soc. 2023, 145, 9540-7.

230. Zhou, H.; Zhao, Y.; Xu, J.; et al. Recover the activity of sintered supported catalysts by nitrogen-doped carbon atomization. Nat. Commun. 2020, 11, 335.

231. Loy, A. C. M.; Teng, S. Y.; How, B. S.; et al. Elucidation of single atom catalysts for energy and sustainable chemical production: synthesis, characterization and frontier science. Prog. Energy. Combust. Sci. 2023, 96, 101074.

232. Gashnikova, D.; Maurer, F.; Sauter, E.; et al. Highly active oxidation catalysts through confining Pd clusters on CeO2 nano-islands. Angew. Chem. Int. Ed. Engl. 2024, 63, e202408511.

233. Li, X.; Pereira-Hernández, X. I.; Chen, Y.; et al. Functional CeOx nanoglues for robust atomically dispersed catalysts. Nature 2022, 611, 284-8.

234. Li, Z.; Li, B.; Li, Q. Single-atom nano-islands (SANIs): a robust atomic-nano system for versatile heterogeneous catalysis applications. Adv. Mater. 2023, 35, e2211103.

235. Liu, X.; Zhou, Y.; Lin, J.; et al. Directional growth and density modulation of single-atom platinum for efficient electrocatalytic hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2024, 63, e202406650.

236. Zhang, X.; Liu, W.; Li, J.; et al. Dehydrogenation of n -butane on metal cobalt sites confined within ceria nanoislands. ACS. Catal. 2024, 14, 15123-32.

237. Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-metal single-atoms in thermocatalysis, electrocatalysis, and photocatalysis. Energy. Environ. Sci. 2021, 14, 2954-3009.

238. Agrachev, M.; Giulimondi, V.; Surin, I.; Mitchell, S.; Jeschke, G.; Pérez-ramírez, J. Electron paramagnetic resonance spectroscopy for the analysis of single-atom catalysts. Chem. Catal. 2024, 4, 101136.

239. Tang, M.; Yuan, W.; Ou, Y.; et al. Recent progresses on structural reconstruction of nanosized metal catalysts via controlled-atmosphere transmission electron microscopy: a review. ACS. Catal. 2020, 10, 14419-50.

240. Liu, Y.; Su, X.; Ding, J.; et al. Progress and challenges in structural, in situ and operando characterization of single-atom catalysts by X-ray based synchrotron radiation techniques. Chem. Soc. Rev. 2024, 53, 11850-87.

241. Liu, Q.; Zhang, Z. Platinum single-atom catalysts: a comparative review towards effective characterization. Catal. Sci. Technol. 2019, 9, 4821-34.

242. Zhao, Y.; Ling, T.; Chen, S.; et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem. Int. Ed. Engl. 2019, 58, 12252-7.

243. Yuan, W.; Fang, K.; You, R.; Zhang, Z.; Wang, Y. Toward in situ atomistic design of catalytic active sites via controlled atmosphere transmission electron microscopy. Acc. Mater. Res. 2023, 4, 275-86.

244. Kraushofer, F.; Parkinson, G. S. Single-atom catalysis: insights from model systems. Chem. Rev. 2022, 122, 14911-39.

245. Liberto G, Tosoni S, Cipriano LA, Pacchioni G. A few questions about single-atom catalysts: when modeling helps. Acc. Mater. Res. 2022, 3, 986-95.

246. Zhang, W.; Fu, Q.; Luo, Q.; Sheng, L.; Yang, J. Understanding single-atom catalysis in view of theory. JACS. Au. 2021, 1, 2130-45.

247. Sun, J.; Tu, R.; Xu, Y.; et al. Machine learning aided design of single-atom alloy catalysts for methane cracking. Nat. Commun. 2024, 15, 6036.

248. Zheng, J.; Wang, S.; Deng, S.; Yao, Z.; Hu, J.; Wang, J. Accelerating the screening of modified MA2Z4 catalysts for hydrogen evolution reaction by deep learning-based local geometric analysis. Energy. &. Environ. Mater. 2024, 7, e12743.

249. Xu, H.; Cheng, D.; Cao, D.; Zeng, X. C. Revisiting the universal principle for the rational design of single-atom electrocatalysts. Nat. Catal. 2024, 7, 207-18.

250. Hai, X.; Zheng, Y.; Yu, Q.; et al. Geminal-atom catalysis for cross-coupling. Nature 2023, 622, 754-60.

251. Zhang, S.; Tang, Y.; Nguyen, L.; et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS. Catal. 2018, 8, 110-21.

252. Sato, K.; Ito, A.; Tomonaga, H.; et al. Pt-Co alloy nanoparticles on a γ-Al2O3 support: synergistic effect between isolated electron-rich Pt and Co for automotive exhaust purification. Chempluschem 2019, 84, 447-56.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/