REFERENCES

1. Sheng, J.; Yan, B.; Lu, W. D.; et al. Oxidative dehydrogenation of light alkanes to olefins on metal-free catalysts. Chem. Soc. Rev. 2021, 50, 1438-68.

2. Fu, Z.; Li, D.; Zhou, L.; et al. A mini review on oxidative dehydrogenation of propane over boron nitride catalysts. Petrol. Sci. 2023, 20, 2488-98.

3. Carter, J. H.; Bere, T.; Pitchers, J. R.; et al. Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green. Chem. 2021, 23, 9747-99.

4. Chen, S.; Chang, X.; Sun, G.; et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315-54.

5. Sun, M.; Hu, Z.; Wang, H.; Suo, Y.; Yuan, Z. Design strategies of stable catalysts for propane dehydrogenation to propylene. ACS. Catal. 2023, 13, 4719-41.

6. Jiang, X.; Sharma, L.; Fung, V.; et al. Oxidative dehydrogenation of propane to propylene with soft oxidants via heterogeneous catalysis. ACS. Catal. 2021, 11, 2182-234.

7. Jiang, X.; Zhang, K.; Forte, M. J.; Cao, S.; Hanna, B. S.; Wu, Z. Recent advances in oxidative dehydrogenation of propane to propylene on boron-based catalysts. Catal. Rev. 2022, 1-80.

8. Dai, X.; Qi, W. Novel alkane dehydrogenation routes via tailored catalysts. ChemCatChem 2024, e202400410.

9. Mesa JA, Robijns S, Khan IA, Rigamonti MG, Bols ML, Dusselier M. Support effects in vanadium incipient wetness impregnation for oxidative and non-oxidative propane dehydrogenation catalysis. Catal. Today. 2024, 430, 114546.

10. Carrero, C. A.; Schloegl, R.; Wachs, I. E.; Schomaecker, R. Critical literature review of the kinetics for the oxidative dehydrogenation of propane over well-defined supported vanadium oxide catalysts. ACS. Catal. 2014, 4, 3357-80.

11. Monguen CK, El Kasmi A, Arshad MF, Kouotou PM, Daniel S, Tian Z. Oxidative dehydrogenation of propane into propene over chromium oxides. Ind. Eng. Chem. Res. 2022, 61, 4546-60.

12. Cao, T.; Dai, X.; Liu, W.; Fu, Y.; Qi, W. Carbon nanotubes modified by multi-heteroatoms polymer for oxidative dehydrogenation of propane: improvement of propene selectivity and oxidation resistance. Carbon 2022, 189, 199-209.

13. Grant, J. T.; Carrero, C. A.; Goeltl, F.; et al. Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts. Science 2016, 354, 1570-3.

14. Auwärter, W. Hexagonal boron nitride monolayers on metal supports: Versatile templates for atoms, molecules and nanostructures. Surf. Sci. Rep. 2019, 74, 1-95.

15. Naclerio, A. E.; Kidambi, P. R. A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv. Mater. 2023, 35, e2207374.

16. Angizi, S.; Alem, S. A. A.; Hasanzadeh, A. M.; et al. A comprehensive review on planar boron nitride nanomaterials: from 2D nanosheets towards 0D quantum dots. Prog. Mater. Sci. 2022, 124, 100884.

17. Shi, L.; Wang, D.; Song, W.; Shao, D.; Zhang, W.; Lu, A. Edge-hydroxylated boron nitride for oxidative dehydrogenation of propane to propylene. ChemCatChem 2017, 9, 1788-93.

18. Li, H.; Zhang, J.; Wu, P.; et al. O2 activation and oxidative dehydrogenation of propane on hexagonal boron nitride: mechanism revisited. J. Phys. Chem. C. 2019, 123, 2256-66.

19. Venegas, J. M.; Hermans, I. The influence of reactor parameters on the boron nitride-catalyzed oxidative dehydrogenation of propane. Org. Process. Res. Dev. 2018, 22, 1644-52.

20. Zhang, Z.; Tian, J.; Wu, X.; et al. Unraveling radical and oxygenate routes in the oxidative dehydrogenation of propane over boron nitride. J. Am. Chem. Soc. 2023, 145, 7910-7.

21. Zhang, X.; You, R.; Wei, Z.; et al. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts. Angew. Chem. Int. Ed. Engl. 2020, 59, 8042-6.

22. Lin, Y.; Williams, T. V.; Xu, T.; Cao, W.; Elsayed-ali, H. E.; Connell, J. W. Aqueous dispersions of few-layered and monolayered hexagonal boron nitride nanosheets from sonication-assisted hydrolysis: critical role of water. J. Phys. Chem. C. 2011, 115, 2679-85.

23. Chen, H.; Yang, Z.; Guo, W.; et al. From highly purified boron nitride to boron nitride-based heterostructures: an inorganic precursor-based strategy. Adv. Funct. Mater. 2019, 29, 1906284.

24. Liu, Z.; Yan, B.; Meng, S.; et al. Plasma tuning local environment of hexagonal boron nitride for oxidative dehydrogenation of propane. Angew. Chem. Int. Ed. Engl. 2021, 60, 19691-5.

25. Guo, F.; Yang, P.; Pan, Z.; Cao, X. N.; Xie, Z.; Wang, X. Carbon-doped BN nanosheets for the oxidative dehydrogenation of ethylbenzene. Angew. Chem. Int. Ed. Engl. 2017, 56, 8231-5.

26. Wang, G.; Zhang, X.; Yan, Y.; Huang, X.; Xie, Z. New insight into structural transformations of borocarbonitride in oxidative dehydrogenation of propane. Appl. Catal. A. Gen. 2021, 628, 118402.

27. Li, D.; Bi, J.; Xie, Z.; et al. Flour-derived borocarbonitride enriched with boron–oxygen species for the oxidative dehydrogenation of propane to olefins. Sci. China. Chem. 2023, 66, 2389-99.

28. Wang, G.; Chen, S.; Duan, Q.; Wei, F.; Lin, S.; Xie, Z. Surface chemistry and catalytic reactivity of borocarbonitride in oxidative dehydrogenation of propane. Angew. Chem. Int. Ed. Engl. 2023, 62, e202307470.

29. Wang, G.; Hu, A.; Duan, Q.; et al. Hierarchical boroncarbonitride nanosheets as metal-free catalysts for enhanced oxidative dehydrogenation of propane. Chem. Eng. Sci. 2024, 288, 119848.

30. Han, R.; Diao, J.; Kumar, S.; et al. Boron nitride for enhanced oxidative dehydrogenation of ethylbenzene. J. Energy. Chem. 2021, 57, 477-84.

31. Sheng, J.; Yan, B.; He, B.; Lu, W.; Li, W.; Lu, A. Nonmetallic boron nitride embedded graphitic carbon catalyst for oxidative dehydrogenation of ethylbenzene. Catal. Sci. Technol. 2020, 10, 1809-15.

32. Zhang, X.; Dai, X.; Wu, K.; et al. A generalized approach to adjust the catalytic activity of borocarbonitride for alkane oxidative dehydrogenation reactions. J. Catal. 2022, 405, 105-15.

33. Zhang, X.; Yan, P.; Xu, J.; et al. Methanol conversion on borocarbonitride catalysts: Identification and quantification of active sites. Sci. Adv. 2020, 6, eaba5778.

34. Nehate, S.; Saikumar, A.; Prakash, A.; Sundaram, K. A review of boron carbon nitride thin films and progress in nanomaterials. Mater. Today. Adv. 2020, 8, 100106.

35. Manzar, R.; Saeed, M.; Shahzad, U.; et al. Recent advancements in boron carbon nitride (BNC) nanoscale materials for efficient supercapacitor performances. Prog. Mater. Sci. 2024, 144, 101286.

36. Namba, S.; Takagaki, A.; Jimura, K.; Hayashi, S.; Kikuchi, R.; Ted, O. S. Effects of ball-milling treatment on physicochemical properties and solid base activity of hexagonal boron nitrides. Catal. Sci. Technol. 2019, 9, 302-9.

37. Mo, Z.; Tai, D.; Zhang, H.; Shahab, A. A comprehensive review on the adsorption of heavy metals by zeolite imidazole framework (ZIF-8) based nanocomposite in water. Chem. Eng. J. 2022, 443, 136320.

38. Dai, H.; Yuan, X.; Jiang, L.; et al. Recent advances on ZIF-8 composites for adsorption and photocatalytic wastewater pollutant removal: fabrication, applications and perspective. Coord. Chem. Rev. 2021, 441, 213985.

39. Wu, P.; Yang, S.; Zhu, W.; et al. Tailoring N-terminated defective edges of porous boron nitride for enhanced aerobic catalysis. Small 2017, 13, 1701857.

40. Yang, S.; Zhang, F.; Qiu, H.; et al. Highly efficient hydrogen production from methanol by single nickel atoms anchored on defective boron nitride nanosheet. Nano. Res. 2023, 16, 8800-8.

41. Chao, Y.; Tang, B.; Luo, J.; et al. Hierarchical porous boron nitride with boron vacancies for improved adsorption performance to antibiotics. J. Colloid. Interface. Sci. 2021, 584, 154-63.

42. Wang, T.; Yin, J.; Guo, X.; Chen, Y.; Lang, W.; Guo, Y. Modulating the crystallinity of boron nitride for propane oxidative dehydrogenation. J. Catal. 2021, 393, 149-58.

43. Cao, T.; Dai, X.; Fu, Y.; Qi, W. Coordination polymer-derived non-precious metal catalyst for propane dehydrogenation: Highly dispersed zinc anchored on N-doped carbon. Appl. Surf. Sci. 2023, 607, 155055.

44. Li, L.; Bai, X.; Shao, L.; et al. Fabrication of a MOF/aerogel composite via a mild and green one-pot method. Bull. Chem. Soc. Jpn. 2021, 94, 2477-83.

45. Gross, P.; Höppe, H. A. Unravelling the urea-route to boron nitride: synthesis and characterization of the crucial reaction intermediate ammonium bis(biureto)borate. Chem. Mater. 2019, 31, 8052-61.

46. Lu, L.; He, J.; Wu, P.; et al. Taming electronic properties of boron nitride nanosheets as metal-free catalysts for aerobic oxidative desulfurization of fuels. Green. Chem. 2018, 20, 4453-60.

47. Xiong, J.; Zhu, W.; Li, H.; et al. Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels. J. Mater. Chem. A. 2015, 3, 12738-47.

48. Qian, H.; Sun, F.; Zhang, W.; Huang, C.; Wang, Y.; Fang, K. Efficient metal borate catalysts for oxidative dehydrogenation of propane. Catal. Sci. Technol. 2022, 12, 1996-2005.

49. Lei, Y.; Pakhira, S.; Fujisawa, K.; et al. Low temperature activation of inert hexagonal boron nitride for metal deposition and single atom catalysis. Mater. Today. 2021, 51, 108-16.

50. Mu, L.; Luo, J.; Wang, C.; et al. BN/ZIF-8 derived carbon hybrid materials for adsorptive desulfurization: Insights into adsorptive property and reaction kinetics. Fuel 2021, 288, 119685.

51. Li, X.; Lin, B.; Li, H.; et al. Carbon doped hexagonal BN as a highly efficient metal-free base catalyst for Knoevenagel condensation reaction. Appl. Catal. B. Environ. 2018, 239, 254-9.

52. Wang, G.; Yan, Y.; Zhang, X.; Gao, X.; Xie, Z. Three-dimensional porous hexagonal boron nitride fibers as metal-free catalysts with enhanced catalytic activity for oxidative dehydrogenation of propane. Ind. Eng. Chem. Res. 2021, 60, 17949-58.

53. Liu, Q.; Chen, C.; Liu, Q.; et al. Nonmetal oxygen vacancies confined under boron nitride for enhanced oxidative dehydrogenation of propane to propene. Appl. Surf. Sci. 2021, 537, 147927.

54. Kiss, J.; Révész, K.; Solymosi, F. Segregation of boron and its reaction with oxygen on Rh. Appl. Surf. Sci. 1989, 37, 95-110.

55. Li, P.; Zhang, X.; Wang, J.; et al. Engineering O-O species in boron nitrous nanotubes increases olefins for propane oxidative dehydrogenation. J. Am. Chem. Soc. 2022, 144, 5930-6.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/