1. Gupta, A.; Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy. Mater. 2020, 10, 2001972.
2. Li, L.; Wang, M.; Wang, J.; et al. Asymmetric gel polymer electrolyte with high lithium ion conductivity for dendrite-free lithium metal batteries. J. Mater. Chem. A. 2020, 8, 8033-40.
3. Hu, A.; Li, F.; Chen, W.; et al. Ion transport kinetics in low-temperature lithium metal batteries. Adv. Energy. Mater. 2022, 12, 2202432.
4. Hao, Z.; Wu, Y.; Zhao, Q.; et al. Functional separators regulating ion transport enabled by metal-organic frameworks for dendrite-free lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102938.
5. Tu, H.; Li, L.; Wang, Z.; et al. Tailoring electrolyte solvation for LiF-rich solid electrolyte interphase toward a stable Li anode. ACS. Nano. 2022, 16, 16898-908.
6. Hwang, G.; Sitapure, N.; Moon, J.; Lee, H.; Hwang, S.; Sang-il, K. J. Model predictive control of lithium-ion batteries: development of optimal charging profile for reduced intracycle capacity fade using an enhanced single particle model (SPM) with first-principled chemical/mechanical degradation mechanisms. Chem. Eng. J. 2022, 435, 134768.
7. Sarkar, S.; Zohra, H. S.; El-halwagi, M. M.; Khan, F. I. Electrochemical models: methods and applications for safer lithium-ion battery operation. J. Electrochem. Soc. 2022, 169, 100501.
8. Pang, H.; Wu, L.; Liu, J.; Liu, X.; Liu, K. Physics-informed neural network approach for heat generation rate estimation of lithium-ion battery under various driving conditions. J. Energy. Chem. 2023, 78, 1-12.
9. Cao, T.; Huang, S.; Sun, Y.; et al. Fluorine-rich interphase and desolvation regulation for a long-life and high-rate TiS2-based Li-metal battery. J. Phys. Chem. C. 2022, 126, 5122-30.
10. Wang, Z.; Qi, F.; Yin, L.; et al. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy. Mater. 2020, 10, 1903843.
11. Wang, Y.; Tu, H.; Sun, A.; et al. Dual Li+ transport enabled by BN-assisted solid-polymer-electrolyte for high-performance lithium batteries. Chem. Eng. J. 2023, 475, 146414.
12. Wang, L.; Yi, S.; Liu, Q.; et al. Bifunctional lithium-montmorillonite enabling solid electrolyte with superhigh ionic conductivity for high-performanced lithium metal batteries. Energy. Storage. Mater. 2023, 63, 102961.
13. Zhang, J.; He, R.; Zhuang, Q.; et al. Tuning 4f-center electron structure by Schottky defects for catalyzing Li diffusion to achieve long-term dendrite-free lithium metal battery. Adv. Sci. 2022, 9, e2202244.
14. Chen, J.; Li, Z.; Sun, N.; et al. A robust Li-intercalated interlayer with strong electron withdrawing ability enables durable and high-rate Li metal anode. ACS. Energy. Lett. 2022, 7, 1594-603.
15. Zhang, N.; Deng, T.; Zhang, S.; et al. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, e2107899.
16. Xu, J.; Zhang, J.; Pollard, T. P.; et al. Electrolyte design for Li-ion batteries under extreme operating conditions. Nature 2023, 614, 694-700.
17. Feng, Y.; Zhou, L.; Ma, H.; et al. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy. Environ. Sci. 2022, 15, 1711-59.
18. Suo, L.; Borodin, O.; Gao, T.; et al. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938-43.
19. Suo, L.; Hu, Y. S.; Li, H.; Armand, M.; Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 2013, 4, 1481.
20. Chen, S.; Zheng, J.; Mei, D.; et al. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, e1706102.
21. Chu, F.; Deng, R.; Wu, F. Unveiling the effect and correlative mechanism of series-dilute electrolytes on lithium metal anodes. Energy. Storage. Mater. 2023, 56, 141-54.
22. Sun, N.; Li, R.; Zhao, Y.; et al. Anionic coordination manipulation of multilayer solvation structure electrolyte for high-rate and low-temperature lithium metal battery. Adv. Energy. Mater. 2022, 12, 2200621.
23. Ma, T.; Ni, Y.; Wang, Q.; et al. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207927.
24. Tian, C.; Qin, K.; Suo, L. Concentrated electrolytes for rechargeable lithium metal batteries. Mater. Futures. 2023, 2, 012101.
25. Yu, Z.; Balsara, N. P.; Borodin, O.; et al. Beyond local solvation structure: nanometric aggregates in battery electrolytes and their effect on electrolyte properties. ACS. Energy. Lett. 2022, 7, 461-70.
26. Liu, W.; Yi, C.; Li, L.; et al. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew. Chem. Int. Ed. Engl. 2021, 60, 12931-40.
27. Hu, Y.; Li, L.; Tu, H.; et al. Janus electrolyte with modified Li+ solvation for high-performance solid-state lithium batteries. Adv. Funct. Mater. 2022, 32, 2203336.
28. Du, L.; Zhang, B.; Yang, C.; Cui, L.; Mai, L.; Xu, L. Leaf-inspired quasi-solid electrolyte enables uniform lithium deposition and suppressed lithium-electrolyte reactions for lithium metal batteries. Energy. Storage. Mater. 2023, 61, 102914.
29. Zheng, G.; Yan, T.; Hong, Y.; et al. A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O2 batteries. Nat. Commun. 2023, 14, 2268.
30. Zeng, X.; Yin, Y.; Shi, Y.; et al. Lithiation-derived repellent toward lithium anode safeguard in quasi-solid batteries. Chem 2018, 4, 298-307.
31. Kim, M. S.; Zhang, Z.; Rudnicki, P. E.; et al. Suspension electrolyte with modified Li+ solvation environment for lithium metal batteries. Nat. Mater. 2022, 21, 445-54.
32. Kim, M. S.; Zhang, Z.; Wang, J.; et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS. Nano. 2023, 17, 3168-80.
33. Tu, H.; He, Z.; Sun, A.; et al. Superior Li+ kinetics by “Low-Activity-Solvent” engineering for stable lithium metal batteries. Nano. Lett. 2024, 24, 5714-21.
34. Huang, X.; Li, R.; Sun, C.; et al. Solvent-assisted hopping mechanism enables ultrafast charging of lithium-ion batteries. ACS. Energy. Lett. 2022, 7, 3947-57.
35. Sun, C.; Ji, X.; Weng, S.; et al. 50C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 2022, 34, e2206020.
36. Chen, Y.; Yu, Z.; Rudnicki, P.; et al. Steric effect tuned ion solvation enabling stable cycling of high-voltage lithium metal battery. J. Am. Chem. Soc. 2021, 143, 18703-13.
37. Park, E.; Park, J.; Lee, K.; et al. Exploiting the steric effect and low dielectric constant of 1,2-dimethoxypropane for 4.3 V lithium metal batteries. ACS. Energy. Lett. 2023, 8, 179-88.
38. Yao, Y. X.; Chen, X.; Yan, C.; et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem. Int. Ed. Engl. 2021, 60, 4090-7.
39. Li, Z.; Rao, H.; Atwi, R.; et al. Non-polar ether-based electrolyte solutions for stable high-voltage non-aqueous lithium metal batteries. Nat. Commun. 2023, 14, 868.
40. Yu, Z.; Rudnicki, P. E.; Zhang, Z.; et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy. 2022, 7, 94-106.
41. Wang, H.; Yu, Z.; Kong, X.; et al. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Adv. Mater. 2021, 33, e2008619.
42. Tan, L.; Chen, S.; Chen, Y.; et al. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality. Angew. Chem. Int. Ed. Engl. 2022, 61, e202203693.
43. Ruan, D.; Tan, L.; Chen, S.; et al. Solvent versus anion chemistry: unveiling the structure-dependent reactivity in tailoring electrochemical interphases for lithium-metal batteries. JACS. Au. 2023, 3, 953-63.
44. Shi, J.; Xu, C.; Lai, J.; et al. An amphiphilic molecule-regulated core-shell-solvation electrolyte for Li-metal batteries at ultra-low temperature. Angew. Chem. Int. Ed. Engl. 2023, 62, e202218151.
45. Zhao, Y.; Zhou, T.; Ashirov, T.; et al. Fluorinated ether electrolyte with controlled solvation structure for high voltage lithium metal batteries. Nat. Commun. 2022, 13, 2575.
46. Dou, Q.; Yao, N.; Pang, W. K.; et al. Unveiling solvation structure and desolvation dynamics of hybrid electrolytes for ultralong cyclability and facile kinetics of Zn–Al alloy anodes. Energy. Environ. Sci. 2022, 15, 4572-83.
47. Tanibata, N.; Morimoto, R.; Nishikawa, K.; Takeda, H.; Nakayama, M. Asymmetry in the solvation-desolvation resistance for Li metal batteries. Anal. Chem. 2020, 92, 3499-502.
48. Feng, Y.; Zhong, B.; Zhang, R.; et al. Achieving high-power and dendrite-free lithium metal anodes via interfacial ion-transport-rectifying pump. Adv. Energy. Mater. 2023, 13, 2203912.
49. Yao, S.; Yang, Y.; Liang, Z.; et al. A dual−functional cationic covalent organic frameworks modified separator for high energy lithium metal batteries. Adv. Funct. Maters. 2023, 33, 2212466.
50. Bai, S.; Sun, Y.; Yi, J.; He, Y.; Qiao, Y.; Zhou, H. High-power Li-metal anode enabled by metal-organic framework modified electrolyte. Joule 2018, 2, 2117-32.
51. Chang, Z.; Qiao, Y.; Yang, H.; et al. Beyond the concentrated electrolyte: further depleting solvent molecules within a Li+ solvation sheath to stabilize high-energy-density lithium metal batteries. Energy. Environ. Sci. 2020, 13, 4122-31.
52. Jiang, C.; Gu, Y.; Tang, M.; et al. Toward stable lithium plating/stripping by successive desolvation and exclusive transport of Li ions. ACS. Appl. Mater. Interfaces. 2020, 12, 10461-70.
53. Li, L.; Tu, H.; Wang, J.; et al. Electrocatalytic MOF-carbon bridged network accelerates Li+-solvents desolvation for high Li+ diffusion toward rapid sulfur redox kinetics. Adv. Funct. Mater. 2023, 33, 2212499.
54. Xu, Y.; Gao, L.; Shen, L.; et al. Ion-transport-rectifying layer enables Li-metal batteries with high energy density. Matter 2020, 3, 1685-700.
55. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H.; He, P.; Zhou, H. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776-89.
56. Li, C.; Lu, R.; Amin, K.; et al. Robust anion-shielding metal-organic frameworks based composite interlayers to achieve uniform Li deposition for stable Li-metal anode. ChemElectroChem 2022, 9, e202101596.
57. Yang, Y.; Yao, S.; Liang, Z.; et al. A self-supporting covalent organic framework separator with desolvation effect for high energy density lithium metal batteries. ACS. Energy. Lett. 2022, 7, 885-96.
58. Wang, X.; Wang, H.; Liu, M.; Li, W. In-plane lithium growth enabled by artificial nitrate-rich layer: fast deposition kinetics and desolvation/adsorption mechanism. Small 2020, 16, e2000769.
59. Wang, J.; Hu, H.; Duan, S.; et al. Construction of moisture-stable lithium diffusion-controlling layer toward high performance dendrite-free lithium anode. Adv. Funct. Mater. 2022, 32, 2110468.
60. Zhang, W.; Shen, Z.; Li, S.; et al. Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries. Adv. Funct. Mater. 2020, 30, 2003800.
61. Wang, J.; Zhang, J.; Wu, J.; et al. Interfacial “Single-atom-in-defects” catalysts accelerating Li+ desolvation kinetics for long-lifespan lithium-metal batteries. Adv. Mater. 2023, 35, e2302828.
62. Wang, J.; Zhang, J.; Cheng, S.; et al. Long-life dendrite-free lithium metal electrode achieved by constructing a single metal atom anchored in a diffusion modulator layer. Nano. Lett. 2021, 21, 3245-53.
63. Wen, P.; Liu, Y.; Mao, J.; et al. Tuning desolvation kinetics of in-situ weakly solvating polyacetal electrolytes for dendrite-free lithium metal batteries. J. Energy. Chem. 2023, 79, 340-7.
64. Xu, K. Interfaces and interphases in batteries. J. Power. Sources. 2023, 559, 232652.
65. Tu, H.; Li, L.; Hu, Y.; et al. Non-flammable liquid polymer-in-salt electrolyte enabling secure and dendrite-free lithium metal battery. Chem. Eng. J. 2022, 434, 134647.
66. Fong, R.; von, S. U.; Dahn, J. R. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 1990, 137, 2009-13.
67. Wang, L.; Menakath, A.; Han, F.; et al. Identifying the components of the solid-electrolyte interphase in Li-ion batteries. Nat. Chem. 2019, 11, 789-96.
68. Hu, Z.; Zhang, S.; Dong, S.; Li, Q.; Cui, G.; Chen, L. Self-stabilized solid electrolyte interface on a host-free Li-metal anode toward high areal capacity and rate utilization. Chem. Mater. 2018, 30, 4039-47.
69. Wang, Z.; Zhang, F.; Sun, Y.; et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy. Mater. 2021, 11, 2003752.
70. Xie, J.; Sun, S. Y.; Chen, X.; et al. Fluorinating the solid electrolyte interphase by rational molecular design for practical lithium-metal batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202204776.
71. Zhu, C.; Sun, C.; Li, R.; et al. Anion–diluent pairing for stable high-energy Li metal batteries. ACS. Energy. Lett. 2022, 7, 1338-47.
72. Sun, A.; Tu, H.; Sun, Z.; et al. Dual-halide interphase enabling high-performance lithium metal batteries in wide-temperature range. ACS. Energy. Lett. 2024, 9, 2545-53.
73. Zhang, S.; Li, R.; Hu, N.; et al. Tackling realistic Li+ flux for high-energy lithium metal batteries. Nat. Commun. 2022, 13, 5431.
74. Liu, S.; Ji, X.; Piao, N.; et al. An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes. Angew. Chem. Int. Ed. Engl. 2021, 60, 3661-71.
75. Zhang, W.; Wu, Q.; Huang, J.; et al. Colossal granular lithium deposits enabled by the grain-coarsening effect for high-efficiency lithium metal full batteries. Adv. Mater. 2020, 32, e2001740.
76. Yan, C.; Li, H. R.; Chen, X.; et al. Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141, 9422-9.
77. Wang, Q.; Yao, Z.; Zhao, C.; et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.
78. Wu, D.; He, J.; Liu, J.; et al. Li2CO3/LiF-rich heterostructured solid electrolyte interphase with superior lithiophilic and Li+-transferred characteristics via adjusting electrolyte additives. Adv. Energy. Mater. 2022, 12, 2200337.
79. Mao, M.; Ji, X.; Wang, Q.; et al. Anion-enrichment interface enables high-voltage anode-free lithium metal batteries. Nat. Commun. 2023, 14, 1082.
80. Zeng, H.; Yu, K.; Li, J.; et al. Beyond LiF: tailoring Li2O-dominated solid electrolyte interphase for stable lithium metal batteries. ACS. Nano. 2024, 18, 1969-81.
81. Wang, J.; Yang, J.; Xiao, Q.; et al. In situ self-assembly of ordered organic/inorganic dual-layered interphase for achieving long-life dendrite-free Li metal anodes in LiFSI-based electrolyte. Adv. Funct. Mater. 2021, 31, 2007434.
82. Wang, Z.; Zhang, H.; Xu, J.; et al. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2112598.
83. Yan, C.; Cheng, X. B.; Tian, Y.; et al. Dual-layered film protected lithium metal anode to enable dendrite-free lithium deposition. Adv. Mater. 2018, 30, e1707629.
84. Li, Z.; Yu, R.; Weng, S.; Zhang, Q.; Wang, X.; Guo, X. Tailoring polymer electrolyte ionic conductivity for production of low- temperature operating quasi-all-solid-state lithium metal batteries. Nat. Commun. 2023, 14, 482.
85. Lin, H.; Zhang, Z.; Wang, Y.; Zhang, X. L.; Tie, Z.; Jin, Z. Template-sacrificed hot fusion construction and nanoseed modification of 3D porous copper nanoscaffold host for stable-cycling lithium metal anodes. Adv. Funct. Mater. 2021, 31, 2102735.
86. Guan, W.; Hu, X.; Liu, Y.; et al. Advances in the emerging gradient designs of Li metal hosts. Research 2022, 2022, 9846537.
87. Bai, M.; Xie, K.; Yuan, K.; et al. A scalable approach to dendrite-free lithium anodes via spontaneous reduction of spray-coated graphene oxide layers. Adv. Mater. 2018, 30, e1801213.
88. Li, Q.; Zhu, S.; Lu, Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.
89. Wang, J.; Li, L.; Hu, H.; et al. Toward dendrite-free metallic lithium anodes: from structural design to optimal electrochemical diffusion kinetics. ACS. Nano. 2022, 16, 17729-60.
90. Yi, J.; Chen, J.; Yang, Z.; et al. Facile Patterning of laser-induced graphene with tailored Li nucleation kinetics for stable lithium-metal batteries. Adv. Energy. Mater. 2019, 9, 1901796.
91. Shen, X.; Zhao, G.; Yu, X.; Huang, H.; Wang, M.; Zhang, N. Multifunctional SnSe–C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anodes. J. Mater. Chem. A. 2021, 9, 21695-702.
92. Wang, X.; Pan, Z.; Wu, Y.; et al. Reducing lithium deposition overpotential with silver nanocrystals anchored on graphene aerogel. Nanoscale 2018, 10, 16562-7.
93. Gu, Y.; Li, C.; Wang, Y.; Lu, W.; Shang, H.; Sun, B. Precise construction of lithiophilic sites by diyne-linked phthalocyanine polymer for suppressing metallic lithium dendrite. Dalton. Trans. 2022, 51, 5828-33.
94. Duan, H.; Zhang, J.; Chen, X.; et al. Uniform nucleation of lithium in 3D current collectors via bromide intermediates for stable cycling lithium metal batteries. J. Am. Chem. Soc. 2018, 140, 18051-7.
95. Huang, K.; Li, Z.; Xu, Q.; Liu, H.; Li, H.; Wang, Y. Lithiophilic CuO nanoflowers on Ti-mesh inducing lithium lateral plating enabling stable lithium-metal anodes with ultrahigh rates and ultralong cycle life. Adv. Energy. Mater. 2019, 9, 1900853.
96. Chen, X.; Li, B.; Zhao, C.; Zhang, R.; Zhang, Q. Synergetic coupling of lithiophilic sites and conductive scaffolds for dendrite-free lithium metal anodes. Small. Methods. 2020, 4, 1900177.
97. Shen, X.; Shi, S.; Li, B.; et al. Lithiophilic interphase porous buffer layer toward uniform nucleation in lithium metal anodes. Adv. Funct. Mater. 2022, 32, 2206388.
98. Gu, J.; Zhu, Q.; Shi, Y.; et al. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS. Nano. 2020, 14, 891-8.
99. Xu, K.; Zhu, M.; Wu, X.; et al. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy. Storage. Mater. 2019, 23, 587-93.
100. Yang, Z.; Dang, Y.; Zhai, P.; et al. Single-atom reversible lithiophilic sites toward stable lithium anodes. Adv. Energy. Mater. 2022, 12, 2103368.
101. Wang, J.; Zhang, J.; Duan, S.; et al. Lithium atom surface diffusion and delocalized deposition propelled by atomic metal catalyst toward ultrahigh-capacity dendrite-free lithium anode. Nano. Lett. 2022, 22, 8008-17.
102. Lee, H.; Sitapure, N.; Hwang, S.; Kwon, J. S. Multiscale modeling of dendrite formation in lithium-ion batteries. Comput. Chem. Eng. 2021, 153, 107415.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.