REFERENCES
1. Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 2004, 21, 230-1.
2. Mackintosh, H. J.; Budd, P. M.; Mckeown, N. B. Catalysis by microporous phthalocyanine and porphyrin network polymers. J. Mater. Chem. 2008, 18, 573-8.
3. Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van, P. P.; Van, B. B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665-81.
4. Dou, H.; Xu, M.; Wang, B.; et al. Microporous framework membranes for precise molecule/ion separations. Chem. Soc. Rev. 2021, 50, 986-1029.
5. Qian, Q.; Asinger, P. A.; Lee, M. J.; et al. MOF-based membranes for gas separations. Chem. Rev. 2020, 120, 8161-266.
6. Lu, J.; Hu, X.; Ung, K. M.; Zhu, Y.; Zhang, X.; Wang, H. Metal–organic frameworks as a subnanometer platform for ion–ion selectivity. Acc. Mater. Res. 2022, 3, 735-47.
7. Mckeown, N. B. The structure-property relationships of Polymers of Intrinsic Microporosity (PIMs). Curr. Opin. Chem. Eng. 2022, 36, 100785.
8. Comesaña-Gándara, B.; Chen, J.; Bezzu, C. G.; et al. Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy. Environ. Sci. 2019, 12, 2733-40.
9. McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35, 675-83.
11. Song, Q.; Cao, S.; Pritchard, R. H.; et al. Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nat. Commun. 2014, 5, 4813.
12. Lee, W. H.; Seong, J. G.; Hu, X.; Lee, Y. M. Recent progress in microporous polymers from thermally rearranged polymers and polymers of intrinsic microporosity for membrane gas separation: pushing performance limits and revisiting trade-off lines. J. Polym. Sci. 2020, 58, 2450-66.
13. Ma, C.; Urban, J. J. Polymers of intrinsic microporosity (PIMs) gas separation membranes: a mini review. Proc. Nat. Res. Soc. 2018, 2, 02002.
14. Topuz, F.; Abdellah, M. H.; Budd, P. M.; Abdulhamid, M. A. Advances in polymers of intrinsic microporosity (PIMs)-based materials for membrane, environmental, catalysis, sensing and energy applications. Polym. Rev. 2024, 64, 251-305.
15. Kim, S.; Lee, Y. M. Rigid and microporous polymers for gas separation membranes. Prog. Polym. Sci. 2015, 43, 1-32.
17. Robeson, L. M.; Liu, Q.; Freeman, B. D.; Paul, D. R. Comparison of transport properties of rubbery and glassy polymers and the relevance to the upper bound relationship. J. Membr. Sci. 2015, 476, 421-31.
18. Chen, L.; Su, P.; Liu, J.; et al. Post-synthesis amination of polymer of intrinsic microporosity membranes for CO2 separation. AIChE. J. 2023, 69, e18050.
19. Qiu, B.; Yu, M.; Luque-Alled, J. M.; et al. High gas permeability in aged superglassy membranes with nanosized UiO-66-NH2/cPIM-1 network fillers. Angew. Chem. Int. Ed. Engl. 2024, 136, e202316356.
20. Du, N.; Robertson, G. P.; Song, J.; Pinnau, I.; Thomas, S.; Guiver, M. D. Polymers of intrinsic microporosity containing trifluoromethyl and phenylsulfone groups as materials for membrane gas separation. Macromolecules 2008, 41, 9656-62.
21. Tamaddondar, M.; Foster, A. B.; Luque-Alled, J. M.; et al. Intrinsically microporous polymer nanosheets for high-performance gas separation membranes. Macromol. Rapid. Commun. 2020, 41, e1900572.
22. Chen, X.; Zhang, Z.; Wu, L.; et al. Polymers of intrinsic microporosity having bulky substitutes and cross-linking for gas separation membranes. ACS. Appl. Polym. Mater. 2020, 2, 987-95.
23. Low, Z. X.; Budd, P. M.; McKeown, N. B.; Patterson, D. A. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers. Chem. Rev. 2018, 118, 5871-911.
24. Ishiwari, F.; Takeuchi, N.; Sato, T.; et al. Rigid-to-flexible conformational transformation: an efficient route to ring-opening of a Tröger’s base-containing ladder polymer. ACS. Macro. Lett. 2017, 6, 775-80.
25. Inoue, K.; Selyanchyn, R.; Fujikawa, S.; Ishiwari, F.; Fukushima, T. Thermal and gas adsorption properties of Tröger’s base/diaza-cyclooctane hybrid ladder polymers. ChemNanoMat 2021, 7, 824-30.
26. Ishiwari, F.; Miyake, S.; Inoue, K.; Hirose, K.; Fukushima, T.; Saeki, A. Two-step conformational control of a dibenzo diazacyclooctane derivative by stepwise protonation. Asian. J. Org. Chem. 2021, 10, 1377-81.
27. Ma, X.; Zhu, Z.; Shi, W.; et al. Unprecedented gas separation performance of a difluoro-functionalized triptycene-based ladder PIM membrane at low temperature. J. Mater. Chem. A. 2021, 9, 5404-14.
28. Park, H. B.; Jung, C. H.; Lee, Y. M.; et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 2007, 318, 254-8.
29. Han, S. H.; Misdan, N.; Kim, S.; Doherty, C. M.; Hill, A. J.; Lee, Y. M. Thermally rearranged (TR) polybenzoxazole: effects of diverse imidization routes on physical properties and gas transport behaviors. Macromolecules 2010, 43, 7657-67.
30. Guo, R.; Sanders, D. F.; Smith, Z. P.; Freeman, B. D.; Paul, D. R.; Mcgrath, J. E. Synthesis and characterization of thermally rearranged (TR) polymers: effect of glass transition temperature of aromatic poly(hydroxyimide) precursors on TR process and gas permeation properties. J. Mater. Chem. A. 2013, 1, 6063.
31. Ghanem, B. S.; Mckeown, N. B.; Budd, P. M.; et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides. Macromolecules 2009, 42, 7881-8.
32. Ghanem, B. S.; McKeown, N. B.; Budd, P. M.; Selbie, J. D.; Fritsch, D. High-performance membranes from polyimides with intrinsic microporosity. Adv. Mater. 2008, 20, 2766-71.
33. Ma, X.; Swaidan, R.; Belmabkhout, Y.; et al. Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity. Macromolecules 2012, 45, 3841-9.
34. Rogan, Y.; Starannikova, L.; Ryzhikh, V.; et al. Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity. Polym. Chem. 2013, 4, 3813.
35. Lai, H. W. H.; Liu, S.; Xia, Y. Norbornyl benzocyclobutene ladder polymers: conformation and microporosity. J. Polym. Sci. Part. A. Polym. Chem. 2017, 55, 3075-81.
36. Lai, H. W. H.; Benedetti, F. M.; Ahn, J. M.; et al. Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations. Science 2022, 375, 1390-2.
37. Sanders, D. F.; Smith, Z. P.; Guo, R.; et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 2013, 54, 4729-61.
38. Song, Q.; Cao, S.; Zavala-Rivera, P.; et al. Photo-oxidative enhancement of polymeric molecular sieve membranes. Nat. Commun. 2013, 4, 1918.
39. Li, F. Y.; Xiao, Y.; Ong, Y. K.; Chung, T. UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production. Adv. Energy. Mater. 2012, 2, 1456-66.
40. Li, F. Y.; Xiao, Y.; Chung, T.; Kawi, S. High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development. Macromolecules 2012, 45, 1427-37.
41. Ma, X.; Li, K.; Zhu, Z.; et al. High-performance polymer molecular sieve membranes prepared by direct fluorination for efficient helium enrichment. J. Mater. Chem. A. 2021, 9, 18313-22.
42. Ji, W.; Geng, H.; Chen, Z.; et al. Facile tailoring molecular sieving effect of PIM-1 by in-situ O3 treatment for high performance hydrogen separation. J. Membr. Sci. 2022, 662, 120971.
43. Chen, X.; Fan, Y.; Wu, L.; et al. Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends. Nat. Commun. 2021, 12, 6140.
44. Satilmis, B.; Alnajrani, M. N.; Budd, P. M. Correction to hydroxyalkylaminoalkylamide PIMs: selective adsorption by ethanolamine- and diethanolamine-modified PIM-1. Macromolecules 2017, 50, 9071.
45. Jeon, J. W.; Kim, D.; Sohn, E.; et al. Highly carboxylate-functionalized polymers of intrinsic microporosity for CO2-selective polymer membranes. Macromolecules 2017, 50, 8019-27.
46. Yanaranop, P.; Santoso, B.; Etzion, R.; Jin, J. Facile conversion of nitrile to amide on polymers of intrinsic microporosity (PIM-1). Polymer 2016, 98, 244-51.
47. Satilmis, B.; Lanč, M.; Fuoco, A.; et al. Temperature and pressure dependence of gas permeation in amine-modified PIM-1. J. Membr. Sci. 2018, 555, 483-96.
48. Satilmis, B.; Alnajrani, M. N.; Budd, P. M. Hydroxyalkylaminoalkylamide PIMs: selective adsorption by ethanolamine- and diethanolamine-modified PIM-1. Macromolecules 2015, 48, 5663-9.
49. Mizrahi, R. K.; Wu, A. X.; Qian, Q.; et al. Facile and time-efficient carboxylic acid functionalization of PIM-1: effect on molecular packing and gas separation performance. Macromolecules 2020, 53, 6220-34.
50. Du, N.; Robertson, G. P.; Song, J.; Pinnau, I.; Guiver, M. D. High-performance carboxylated polymers of intrinsic microporosity (PIMs) with tunable gas transport properties. Macromolecules 2009, 42, 6038-43.
51. Mason, C. R.; Maynard-Atem, L.; Heard, K. W.; et al. Enhancement of CO2 affinity in a polymer of intrinsic microporosity by amine modification. Macromolecules 2014, 47, 1021-9.
52. Mason, C. R.; Maynard-Atem, L.; Al-Harbi, N. M.; et al. Polymer of intrinsic microporosity incorporating thioamide functionality: preparation and gas transport properties. Macromolecules 2011, 44, 6471-9.
53. Du, N.; Park, H. B.; Robertson, G. P.; et al. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 2011, 10, 372-5.
54. Patel, H. A.; Yavuz, C. T. Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. Chem. Commun. 2012, 48, 9989-91.
55. Wang, X.; Liu, Y.; Ma, X.; et al. Soluble polymers with intrinsic porosity for flue gas purification and natural gas upgrading. Adv. Mater. 2017, 29, 1605826.
56. Roy, A.; Holmes, H. E.; Baugh, L. S.; et al. Guanidine-functionalized PIM-1 as a high-capacity polymeric sorbent for CO2 capture. Chem. Mater. 2024, 36, 4393-402.
57. Kim, B. G.; Henkensmeier, D.; Kim, H.; Jang, J. H.; Nam, S. W.; Lim, T. Sulfonation of PIM-1 - towards highly oxygen permeable binders for fuel cell application. Macromol. Res. 2014, 22, 92-8.
58. Wang, Z.; Isfahani, A. P.; Wakimoto, K.; et al. Tuning the gas selectivity of Tröger’s base polyimide membranes by using carboxylic acid and tertiary base interactions. ChemSusChem 2018, 11, 2744-51.
59. Madrid, E.; Rong, Y.; Carta, M.; et al. Metastable ionic diodes derived from an amine-based polymer of intrinsic microporosity. Angew. Chem. Int. Ed. Engl. 2014, 53, 10751-4.
60. Carta, M.; Malpass-Evans, R.; Croad, M.; et al. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303-7.
61. Huang, M.; Lu, K.; Wang, Z.; Bi, X.; Zhang, Y.; Jin, J. Thermally cross-linked amidoxime-functionalized polymers of intrinsic microporosity membranes for highly selective hydrogen separation. ACS. Sustain. Chem. Eng. 2021, 9, 9426-35.
62. Wang, Z.; Luo, X.; Song, Z.; et al. Microporous polymer adsorptive membranes with high processing capacity for molecular separation. Nat. Commun. 2022, 13, 4169.
63. Jin, Y.; Song, Q.; Xie, N.; et al. Amidoxime-functionalized polymer of intrinsic microporosity (AOPIM-1)-based thin film composite membranes with ultrahigh permeance for organic solvent nanofiltration. J. Membr. Sci. 2021, 632, 119375.
64. Thompson, K. A.; Mathias, R.; Kim, D.; et al. N-Aryl-linked spirocyclic polymers for membrane separations of complex hydrocarbon mixtures. Science 2020, 369, 310-5.
65. Jue, M. L.; Breedveld, V.; Lively, R. P. Defect-free PIM-1 hollow fiber membranes. J. Membr. Sci. 2017, 530, 33-41.
66. Lasseuguette, E.; Malpass-Evans, R.; Casalini, S.; Mckeown, N. B.; Ferrari, M. Optimization of the fabrication of amidoxime modified PIM-1 electrospun fibres for use as breathable and reactive materials. Polymer 2021, 213, 123205.
67. Zhang, Z.; Wen, L.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622-39.
68. Zhu, Z.; Wang, D.; Tian, Y.; Jiang, L. Ion/molecule transportation in nanopores and nanochannels: from critical principles to diverse functions. J. Am. Chem. Soc. 2019, 141, 8658-69.
69. Ogieglo, W.; Knozowska, K.; Puspasari, T.; et al. Unlocking complex chemical and morphological transformations during thermal treatment of O-hydroxyl-substituted polyimide of intrinsic microporosity: Impact on ethanol/cyclohexane separation. J. Membr. Sci. 2023, 684, 121881.
70. Wang, A.; Tan, R.; Liu, D.; et al. Ion-selective microporous polymer membranes with hydrogen-bond and salt-bridge networks for aqueous organic redox flow batteries. Adv. Mater. 2023, 35, e2210098.
71. Ye, C.; Tan, R.; Wang, A.; et al. Long-life aqueous organic redox flow batteries enabled by amidoxime-functionalized ion-selective polymer membranes. Angew. Chem. Int. Ed. Engl. 2022, 134, e202207580.
72. Wang, Y.; Ma, X.; Ghanem, B.; Alghunaimi, F.; Pinnau, I.; Han, Y. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today. Nano. 2018, 3, 69-95.
73. Feng, X.; Zhu, J.; Jin, J.; Wang, Y.; Zhang, Y.; Van, B. B. Polymers of intrinsic microporosity for membrane-based precise separations. Prog. Mater. Sci. 2024, 144, 101285.
74. Jeon, J. W.; Kim, H. J.; Jung, K. H.; et al. Carbonization of carboxylate-functionalized polymers of intrinsic microporosity for water treatment. Macromol. Chem. Phys. 2020, 221, 1900532.
75. Satilmis, B.; Budd, P. M. Base-catalysed hydrolysis of PIM-1: amide versus carboxylate formation. RSC. Adv. 2014, 4, 52189-98.
76. Weng, X.; Baez, J. E.; Khiterer, M.; Hoe, M. Y.; Bao, Z.; Shea, K. J. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew. Chem. Int. Ed. Engl. 2015, 54, 11214-8.
77. Kaboudin, B.; Elhamifar, D. Phosphorus pentasulfide: a mild and versatile reagent for the preparation of thioamides from nitriles. Synthesis 2006, 37, 224-6.
78. Yi, S.; Ghanem, B.; Liu, Y.; Pinnau, I.; Koros, W. J. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Sci. Adv. 2019, 5, eaaw5459.
79. Dong, H.; Zhu, Z.; Li, K.; et al. Significantly improved gas separation properties of sulfonated PIM-1 by direct sulfonation using SO3 solution. J. Membr. Sci. 2021, 635, 119440.
80. Zuo, P.; Li, Y.; Wang, A.; et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem. Int. Ed. Engl. 2020, 59, 9564-73.
81. Olvera, L. I.; Zolotukhin, M. G.; Hernández-Cruz, O.; et al. Linear, single-strand heteroaromatic polymers from superacid-catalyzed step-growth polymerization of ketones with bisphenols. ACS. Macro. Lett. 2015, 4, 492-4.
82. Lee, T. H.; Joo, T.; Jean-Baptiste, P.; Dean, P. A.; Yeo, J. Y.; Smith, Z. P. Fine-tuning ultramicroporosity in PIM-1 membranes by aldehyde functionalization for efficient hydrogen separation. J. Mater. Chem. A. 2024, 12, 24519-29.
83. Swaidan, R.; Ghanem, B. S.; Litwiller, E.; Pinnau, I. Pure- and mixed-gas CO2/CH4 separation properties of PIM-1 and an amidoxime-functionalized PIM-1. J. Membr. Sci. 2014, 457, 95-102.
84. Huang, M.; Wang, Z.; Lu, K.; et al. In-situ generation of polymer molecular sieves in polymer membranes for highly selective gas separation. J. Membr. Sci. 2021, 630, 119302.
85. Jiao, H.; Shi, Y.; Shi, Y.; et al. In-situ etching MOF nanoparticles for constructing enhanced interface in hybrid membranes for gas separation. J. Membr. Sci. 2023, 666, 121146.
86. Zhu, S.; Bi, X.; Shi, Y.; et al. Thin films based on polyimide/metal–organic framework nanoparticle composite membranes with substantially improved stability for CO2/CH4 separation. ACS. Appl. Nano. Mater. 2022, 5, 8997-9007.
87. Shi, Y.; Wu, S.; Wang, Z.; et al. Mixed matrix membranes with highly dispersed MOF nanoparticles for improved gas separation. Sep. Purif. Technol. 2021, 277, 119449.
88. Wang, Z.; Tian, Y.; Fang, W.; Shrestha, B. B.; Huang, M.; Jin, J. Constructing strong interfacial interactions under mild conditions in MOF-incorporated mixed matrix membranes for gas separation. ACS. Appl. Mater. Interfaces. 2021, 13, 3166-74.
89. Bi, X.; Zhang, Y.; Zhang, F.; Zhang, S.; Wang, Z.; Jin, J. MOF nanosheet-based mixed matrix membranes with metal-organic coordination interfacial interaction for gas separation. ACS. Appl. Mater. Interfaces. 2020, 12, 49101-10.
90. Huang, M.; Wang, Z.; Jin, J. Two-dimensional microporous material-based mixed matrix membranes for gas separation. Chem. Asian. J. 2020, 15, 2303-15.
91. Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv. Mater. 2016, 28, 3399-405.
92. Wang, Z.; Ren, H.; Zhang, S.; Zhang, F.; Jin, J. Polymers of intrinsic microporosity/metal–organic framework hybrid membranes with improved interfacial interaction for high-performance CO2 separation. J. Mater. Chem. A. 2017, 5, 10968-77.
93. Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435-7.
94. Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Mariñas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301-10.
95. Yang, Y.; Wang, Z.; Song, Z.; et al. Thermal treated amidoxime modified polymer of intrinsic microporosity (AOPIM-1) membranes for high permselectivity reverse osmosis desalination. Desalination 2023, 551, 116413.
96. Dong, Y.; Liu, Y.; Li, H.; et al. Crown ether-based Tröger’s base membranes for efficient Li+/Mg2+ separation. J. Membr. Sci. 2023, 665, 121113.
97. Wang, Z.; Luo, X.; Zhang, J.; Zhang, F.; Fang, W.; Jin, J. Polymer membranes for organic solvent nanofiltration: recent progress, challenges and perspectives. Adv. Membr. 2023, 3, 100063.
98. Bruno, N. C.; Mathias, R.; Lee, Y. J.; et al. Solution-processable polytriazoles from spirocyclic monomers for membrane-based hydrocarbon separations. Nat. Mater. 2023, 22, 1540-7.
99. Tan, R.; Wang, A.; Malpass-Evans, R.; et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 2020, 19, 195-202.
100. Li, C.; Ward, A. L.; Doris, S. E.; Pascal, T. A.; Prendergast, D.; Helms, B. A. Polysulfide-blocking microporous polymer membrane tailored for hybrid Li-sulfur flow batteries. Nano. Lett. 2015, 15, 5724-9.
101. Wang, X. X.; Song, L. N.; Zheng, L. J.; et al. Polymers with intrinsic microporosity as solid ion conductors for solid-state lithium batteries. Angew. Chem. Int. Ed. Engl. 2023, 135, e202308837.
102. Baran, M. J.; Braten, M. N.; Sahu, S.; et al. Design rules for membranes from polymers of intrinsic microporosity for crossover-free aqueous electrochemical devices. Joule 2019, 3, 2968-85.





