REFERENCES
1. Nguyen, N. N. Prospect and challenges of hydrate-based hydrogen storage in the low-carbon future. Energy. Fuels. 2023, 37, 9771-89.
2. Guerra, K.; Gutiérrez-alvarez, R.; Guerra, O. J.; Haro, P. Opportunities for low-carbon generation and storage technologies to decarbonise the future power system. Appl. Energy. 2023, 336, 120828.
3. Lan, K.; Zhao, D. Functional ordered mesoporous materials: present and future. Nano. Lett. 2022, 22, 3177-9.
4. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710-2.
5. Zhao, D.; Feng, J.; Huo, Q.; et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548-52.
6. Benzigar, M. R.; Talapaneni, S. N.; Joseph, S.; et al. Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications. Chem. Soc. Rev. 2018, 47, 2680-721.
7. Gang, D.; Uddin, A. Z.; Lian, Q.; Yao, L.; Zappi, M. E. A review of adsorptive remediation of environmental pollutants from aqueous phase by ordered mesoporous carbon. Chem. Eng. J. 2021, 403, 126286.
8. Mehdipour-Ataei, S.; Aram, E. Mesoporous carbon-based materials: a review of synthesis, modification, and applications. Catalsts 2023, 13, 2.
9. Gao, M.; Wang, L.; Yang, Y.; Sun, Y.; Zhao, X.; Wan, Y. Metal and metal oxide supported on ordered mesoporous carbon as heterogeneous catalysts. ACS. Catal. 2023, 13, 4060-90.
10. Saleem, A.; Zhang, Y.; Usman, M.; Haris, M.; Li, P. Tailored architectures of mesoporous carbon nanostructures: from synthesis to applications. Nano. Today. 2022, 46, 101607.
11. Ryoo, R.; Joo, S. H.; Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B. 1999, 103, 7743-6.
12. Meng, Y.; Gu, D.; Zhang, F.; et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic−organic self-assembly. Chem. Mater. 2006, 18, 4447-64.
13. Ma, T. Y.; Liu, L.; Yuan, Z. Y. Direct synthesis of ordered mesoporous carbons. Chem. Soc. Rev. 2013, 42, 3977-4003.
14. Yan, Y.; Chen, G.; She, P.; et al. Mesoporous nanoarchitectures for electrochemical energy conversion and storage. Adv. Mater. 2020, 32, e2004654.
15. Chauhan, S. Synthesis of ordered mesoporous carbon by soft template method. Mater. Today. 2023, 81, 842-7.
16. Wu, Z.; Zhang, K.; Sun, J.; et al. Kinetics-controlled synthesis of ordered mesoporous carbon single crystals from liquefied wood. Adv. Funct. Mater. 2023, 33, 2213852.
17. Li, W.; Wang, G.; Sui, W.; et al. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 2022, 196, 819-27.
18. Lee, H. A.; Park, E.; Lee, H. Polydopamine and its derivative surface chemistry in material science: a focused review for studies at KAIST. Adv. Mater. 2020, 32, e1907505.
19. Qu, K.; Wang, Y.; Vasileff, A.; Jiao, Y.; Chen, H.; Zheng, Y. Polydopamine-inspired nanomaterials for energy conversion and storage. J. Mater. Chem. A. 2018, 6, 21827-46.
20. Xu, Y.; Hu, J.; Hu, J.; et al. Bioinspired polydopamine hydrogels: strategies and applications. Prog. Polym. Sci. 2023, 146, 101740.
21. Wang, Z.; Zou, Y.; Li, Y.; Cheng, Y. Metal-containing polydopamine nanomaterials: catalysis, energy, and theranostics. Small 2020, 16, e1907042.
22. Tang, J.; Liu, J.; Li, C.; et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles. Angew. Chem. Int. Ed. Engl. 2015, 54, 588-93.
23. Lin, K.; Gan, Y.; Zhu, P.; et al. Hollow mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug delivery. Nanotechnology 2021, 32, 285602.
24. Zhu, M.; Shi, Y.; Shan, Y.; et al. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J. Nanobiotechnology. 2021, 19, 387.
25. Ma, H.; Peng, J.; Zhang, J.; et al. Frontiers in preparations and promising applications of mesoporous polydopamine for cancer diagnosis and treatment. Pharmaceutics 2022, 15, 15.
26. Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, BFnatrevmats201623.
27. Yin, J.; Zhang, W.; Alhebshi, N. A.; Salah, N.; Alshareef, H. N. Synthesis strategies of porous carbon for supercapacitor applications. Small. Methods. 2020, 4, 1900853.
28. Feng, Y.; Li, P.; Wei, J. Engineering functional mesoporous materials from plant polyphenol based coordination polymers. Coordin. Chem. Rev. 2022, 468, 214649.
29. Li, Z.; Li, B.; Yu, C.; Wang, H.; Li, Q. Recent progress of hollow carbon nanocages: general design fundamentals and diversified electrochemical applications. Adv. Sci. 2023, 10, e2206605.
30. Luo, H.; Kaneti, Y. V.; Ai, Y.; et al. Nanoarchitectured porous conducting polymers: from controlled synthesis to advanced applications. Adv. Mater. 2021, 33, e2007318.
31. Wei, F.; Zhang, T.; Xu, H.; et al. 2D mesoporous naphthalene-based conductive heteroarchitectures toward long-life, high-capacity zinc-iodine batteries. Adv. Funct. Mater. 2024, 34, 2310693.
32. Wei, F.; Xu, H.; Zhang, T.; et al. Mesoporous poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) as efficient iodine host for high-performance zinc-iodine batteries. ACS. Nano. 2023, 17, 20643-53.
33. Peng, L.; Peng, H.; Li, W.; Zhao, D. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials. Nat. Protoc. 2023, 18, 1155-78.
34. Pan, P.; Zhang, T.; Yue, Q.; et al. Interface coassembly and polymerization on magnetic colloids: toward core-shell functional mesoporous polymer microspheres and their carbon derivatives. Adv. Sci. 2020, 7, 2000443.
35. Khan, Y.; Sadia, H.; Ali, S. S. Z.; et al. Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: a review. Catalysts 2022, 12, 1386.
36. Feng, Y.; Qin, J.; Zhou, Y.; Yue, Q.; Wei, J. Spherical mesoporous Fe-N-C single-atom nanozyme for photothermal and catalytic synergistic antibacterial therapy. J. Colloid. Interface. Sci. 2022, 606, 826-36.
37. Duan, L.; Wang, C.; Zhang, W.; et al. Interfacial assembly and applications of functional mesoporous materials. Chem. Rev. 2021, 121, 14349-429.
38. Tian, H.; Lin, Z.; Xu, F.; et al. Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution. Small 2016, 12, 3155-63.
39. Qian, H.; Tang, J.; Hossain, M. S. A.; Bando, Y.; Wang, X.; Yamauchi, Y. Localization of platinum nanoparticles on inner walls of mesoporous hollow carbon spheres for improvement of electrochemical stability. Nanoscale 2017, 9, 16264-72.
40. Tang, J.; Liu, J.; Salunkhe, R. R.; Wang, T.; Yamauchi, Y. Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chem. Commun. 2016, 52, 505-8.
41. Lin, Z.; Tian, H.; Xu, F.; Yang, X.; Mai, Y.; Feng, X. Facile synthesis of bowl-shaped nitrogen-doped carbon hollow particles templated by block copolymer “kippah vesicles” for high performance supercapacitors. Polym. Chem. 2016, 7, 2092-8.
42. Du, G.; Wang, H.; Liu, J.; Sun, P.; Chen, T. Hierarchically porous mesostructured polydopamine nanospheres and derived carbon for supercapacitors. Langmuir 2022, 38, 8964-74.
43. Tang, J.; Wang, J.; Shrestha, L. K.; et al. Activated porous carbon spheres with customized mesopores through assembly of diblock copolymers for electrochemical capacitor. ACS. Appl. Mater. Interfaces. 2017, 9, 18986-93.
44. Xiang, L.; Yuan, S.; Wang, F.; et al. Porous polymer cubosomes with ordered single primitive bicontinuous architecture and their sodium-iodine batteries. J. Am. Chem. Soc. 2022, 144, 15497-508.
45. Xiong, S.; Fan, J.; Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. A facile template approach to nitrogen-doped hierarchical porous carbon nanospheres from polydopamine for high-performance supercapacitors. J. Mater. Chem. A. 2017, 5, 18242-52.
46. Jung, H. S.; Cho, K. J.; Joo, S.; et al. Mesoporous polydopamine-encapsulated fluorescent nanodiamonds: a versatile platform for biomedical applications. ACS. Appl. Mater. Interfaces. 2023, 15, 33425-36.
47. Wu, D.; Duan, X.; Guan, Q.; et al. Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided cancer therapy. Adv. Funct. Mater. 2019, 29, 1900095.
48. Guan, B. Y.; Zhang, S. L.; Lou, X. W. D. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem. Int. Ed. Engl. 2018, 130, 6284-8.
49. Peng, L.; Hung, C. T.; Wang, S.; et al. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073-80.
50. Peng, L.; Peng, H.; Hung, C.; et al. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem 2021, 7, 1020-32.
51. Peng, L.; Peng, H.; Liu, Y.; et al. Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Sci. Adv. 2021, 7, eabi7403.
52. Yang, X.; Lu, P.; Yu, L.; et al. An efficient emulsion-induced interface assembly approach for rational synthesis of mesoporous carbon spheres with versatile architectures. Adv. Funct. Mater. 2020, 30, 2002488.
53. Pan, P.; Liu, Q.; Hu, L.; et al. Dual-template induced interfacial assembly of yolk-shell magnetic mesoporous polydopamine vesicles with tunable cavity for enhanced photothermal antibacterial. Chem. Eng. J. 2023, 472, 144972.
54. Acter, S.; Vidallon, M. L. P.; Crawford, S.; Tabor, R. F.; Teo, B. M. Bowl-shaped mesoporous polydopamine nanoparticles for size-dependent endocytosis into HeLa cells. ACS. Appl. Nano. Mater. 2021, 4, 9536-46.
55. Huang, A.; Dai, H.; Wu, X.; Zhao, Z.; Wu, Y. Synthesis and characterization of mesoporous hydroxyapatite powder by microemulsion technique. J. Mater. Res. Technol. 2019, 8, 3158-66.
56. Dong, L.; Liu, M.; Fang, M.; et al. Nucleation-inhibited emulsion interfacial assembled polydopamine microvesicles as artificial antigen-presenting cells. Small 2024, 20, e2400714.
57. Zhao, T.; Elzatahry, A.; Li, X.; Zhao, D. Single-micelle-directed synthesis of mesoporous materials. Nat. Rev. Mater. 2019, 4, 775-91.
58. Guan, B. Y.; Yu, L.; Lou, X. W. Formation of asymmetric bowl-like mesoporous particles via emulsion-induced interface anisotropic assembly. J. Am. Chem. Soc. 2016, 138, 11306-11.
59. Peng, L.; Peng, H.; Xu, L.; et al. Anisotropic self-assembly of asymmetric mesoporous hemispheres with tunable pore structures at liquid-liquid interfaces. J. Am. Chem. Soc. 2022, 144, 15754-63.
60. Guo, P.; Zhao, R.; Zhang, Z.; et al. Droplet-directed anisotropic assembly of semifootball-like carbon nanoparticles with multimodal pore architectures. Adv. Funct. Mater. 2024, 34, 2400503.
61. Fan, L.; Xia, Z.; Xu, M.; Lu, Y.; Li, Z. 1D SnO2 with wire-in-tube architectures for highly selective electrochemical reduction of CO2 to C1 products. Adv. Funct. Mater. 2018, 28, 1706289.
62. Meng, Y.; Wang, W.; Ho, J. C. One-dimensional atomic chains for ultimate-scaled electronics. ACS. Nano. 2022, 16, 13314-22.
63. Wei, F.; Chen, B.; Fu, J.; et al. A universal strategy for large-scale and controlled fabrication of conductive mesoporous polymer monolayers. Chem. Eng. J. 2023, 460, 141504.
64. Liu, S.; Gordiichuk, P.; Wu, Z. S.; et al. Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers. Nat. Commun. 2015, 6, 8817.
65. Lima, R. M. A. P.; Alcaraz-Espinoza, J. J.; da, S. F. A. G. J.; de, O. H. P. Multifunctional wearable electronic textiles using cotton fibers with polypyrrole and carbon nanotubes. ACS. Appl. Mater. Interfaces. 2018, 10, 13783-95.
66. Zhu, M.; Chen, J.; Huang, L.; Ye, R.; Xu, J.; Han, Y. F. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew. Chem. Int. Ed. Engl. 2019, 58, 6595-9.
67. Zhu, X.; Xia, Y.; Zhang, X.; et al. Synthesis of carbon nanotubes@mesoporous carbon core–shell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. J. Mater. Chem. A. 2019, 7, 8975-83.
68. Xu, H.; Chen, J.; Zhang, Z.; Hung, C. T.; Yang, J.; Li, W. In situ confinement of ultrasmall metal nanoparticles in short mesochannels for durable electrocatalytic nitrate reduction with high efficiency and selectivity. Adv. Mater. 2023, 35, e2207522.
69. Jiang, H.; Yang, L.; Li, C.; Yan, C.; Lee, P. S.; Ma, J. High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy. Environ. Sci. 2011, 4, 1813.
70. Chen, G.; Yan, Y.; Wang, J.; et al. General formation of macro-/mesoporous nanoshells from interfacial assembly of irregular mesostructured nanounits. Angew. Chem. Int. Ed. Engl. 2020, 59, 19663-8.
71. Jiang, H.; Zhang, H.; Fu, Y.; et al. Self-volatilization approach to mesoporous carbon nanotube/silver nanoparticle hybrids: the role of silver in boosting Li ion storage. ACS. Nano. 2016, 10, 1648-54.
72. Han, Z.; Gao, M.; Wang, Z.; Peng, L.; Zhao, Y.; Sun, L. pH/NIR-responsive nanocarriers based on mesoporous polydopamine encapsulated gold nanorods for drug delivery and thermo-chemotherapy. J. Drug. Deliv. Sci. Tec. 2022, 75, 103610.
73. Liu, J.; Yang, F.; Cao, L.; et al. A robust nonvolatile resistive memory device based on a freestanding ultrathin 2D imine polymer film. Adv. Mater. 2019, 31, e1902264.
74. Liu, C.; Chen, H.; Wang, S.; et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545-57.
75. Khan, K.; Tareen, A. K.; Aslam, M.; et al. Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C. 2020, 8, 387-440.
76. Liu, S.; Wang, F.; Dong, R.; et al. Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size. Adv. Mater. 2016, 28, 8365-70.
77. Wei, F.; Zhang, T.; Dong, R.; et al. Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties. Nat. Protoc. 2023, 18, 2459-84.
78. Wang, J.; Malgras, V.; Sugahara, Y.; Yamauchi, Y. Electrochemical energy storage performance of 2D nanoarchitectured hybrid materials. Nat. Commun. 2021, 12, 3563.
79. Gou, Z.; Qu, H.; Liu, H.; et al. Coupling of N-doped mesoporous carbon and N-Ti3C2 in 2D sandwiched heterostructure for enhanced oxygen electroreduction. Small 2022, 18, e2106581.
80. Guan, B. Y.; Yu, L.; Lou, X. W. Chemically assisted formation of monolayer colloidosomes on functional particles. Adv. Mater. 2016, 28, 9596-601.
81. Peng, H.; Yao, B.; Wei, X.; et al. Pore and heteroatom engineered carbon foams for supercapacitors. Adv. Energy. Mater. 2019, 9, 1803665.
82. Tian, H.; Qin, J.; Hou, D.; et al. General interfacial self-assembly engineering for patterning two-dimensional polymers with cylindrical mesopores on graphene. Angew. Chem. Int. Ed. Engl. 2019, 131, 10279-84.
83. Li, Q.; Xu, X.; Guo, J.; et al. Two-dimensional MXene-polymer heterostructure with ordered in-plane mesochannels for high-performance capacitive deionization. Angew. Chem. Int. Ed. Engl. 2021, 133, 26732-8.
84. Lan, K.; Wei, Q.; Wang, R.; et al. Two-dimensional mesoporous heterostructure delivering superior pseudocapacitive sodium storage via bottom-up monomicelle assembly. J. Am. Chem. Soc. 2019, 141, 16755-62.
85. Qiu, P.; Zhang, X.; Ai, Y.; Luo, W.; Li, W.; Zhao, D. Modular assembly of metal nanoparticles/mesoporous carbon two-dimensional nanosheets. NPG. Asia. Mater. 2023, 15, 482.
86. Wen, B.; Yang, H.; Lin, Y.; et al. Synthesis of core–shell Co@S-doped carbon@ mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A. 2021, 9, 3567-75.
87. Li, X.; Zhang, H.; Yang, X.; et al. Mesoporous dopamine-modified leaf-like zeolitic imidazolate frameworks derived carbon for efficient capacitive deionization. J. Colloid. Interface. Sci. 2024, 654, 559-67.
88. Wang, R.; Lan, K.; Lin, R.; et al. Precisely controlled vertical alignment in mesostructured carbon thin films for efficient electrochemical sensing. ACS. Nano. 2021, 15, 7713-21.
89. Chen, B.; Wei, F.; Ma, Z.; et al. Interfacial self-assembly growth of mesoporous polydopamine nanofilms for formaldehyde sensing. J. Polym. Sci. 2024, 62, 1588-96.
90. Zhao, T.; Chen, L.; Lin, R.; et al. Interfacial assembly directed unique mesoporous architectures: from symmetric to asymmetric. Acc. Mater. Res. 2020, 1, 100-14.
91. Zhao, Z.; Duan, L.; Zhao, Y.; et al. Constructing unique mesoporous carbon superstructures via monomicelle interface confined assembly. J. Am. Chem. Soc. 2022, 144, 11767-77.
93. Li, H.; Liu, J. Janus mesoporous nanoparticles enable building biological logic systems. Sci. China. Chem. 2024, 67, 316-8.
94. Zhao, T.; Zhu, X.; Hung, C. T.; et al. Spatial isolation of carbon and silica in a single Janus mesoporous nanoparticle with tunable amphiphilicity. J. Am. Chem. Soc. 2018, 140, 10009-15.
95. Zhao, T.; Chen, L.; Liu, M.; et al. Emulsion-oriented assembly for Janus double-spherical mesoporous nanoparticles as biological logic gates. Nat. Chem. 2023, 15, 832-40.
96. Zhao, T.; Lin, R.; Xu, B.; et al. Mesoporous nano-badminton with asymmetric mass distribution: how nanoscale architecture affects the blood flow dynamics. J. Am. Chem. Soc. 2023, 145, 21454-64.
97. Hou, M.; Liu, M.; Yu, H.; et al. Spatially asymmetric nanoparticles for boosting ferroptosis in tumor therapy. Nano. Lett. 2024, 24, 1284-93.
98. Liu, M.; Shang, C.; Zhao, T.; et al. Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal-organic framework. Nat. Commun. 2023, 14, 1211.
99. Chen, G.; Han, J.; Niu, Z.; et al. Regioselective surface assembly of mesoporous carbon on zeolites creating anisotropic wettability for biphasic interface catalysis. J. Am. Chem. Soc. 2023, 145, 9021-8.
100. Qian, X.; Zhang, F.; Zhao, Y.; Liang, K.; Luo, W.; Yang, J. Polydopamine-derived carbon: what a critical role for lithium storage? Front. Energy. Res. 2020, 8, 140.
101. Wang, N.; Hou, D.; Li, Q.; Zhang, P.; Wei, H.; Mai, Y. Two-dimensional interface engineering of mesoporous polydopamine on graphene for novel organic cathodes. ACS. Appl. Energy. Mater. 2019, 2, 5816-23.
102. Zhu, M.; Wu, J.; Zhong, W.; Lan, J.; Sui, G.; Yang, X. A biobased composite gel polymer electrolyte with functions of lithium dendrites suppressing and manganese ions trapping. Adv. Energy. Mater. 2018, 8, 1702561.
103. Wang, H.; Lan, J.; Yuan, H.; et al. Chemical grafting-derived N, P co-doped hollow microporous carbon spheres for high-performance sodium-ion battery anodes. Appl. Surf. Sci. 2020, 518, 146221.
104. Liu, Y.; Wan, Y.; Zhang, J. Y.; et al. Surface stretching enables highly disordered graphitic domains for ultrahigh rate sodium storage. Small 2023, 19, e2301203.
105. Qiu, P.; Yao, Y.; Li, W.; et al. Sub-nanometric manganous oxide clusters in nitrogen doped mesoporous carbon nanosheets for high-performance lithium-sulfur batteries. Nano. Lett. 2021, 21, 700-8.
106. Yu, J.; Chen, C.; Shi, F.; et al. A multifunctional MXene-porous polydopamine interface for stable and dendrite-free zinc metal batteries. Energy. Storage. Mater. 2023, 63, 102966.
107. Jiang, S.; Xing, F.; Zhang, J.; et al. Two-dimensional redox polydopamine with in-plane cylindrical mesochannels on graphene for high-energy and high-power lithium-ion capacitors. Chem. Eng. J. 2023, 452, 139095.
108. Zhang, H.; Zhou, W.; Lu, X. F.; Chen, T.; Lou, X. W. D. Implanting isolated Ru atoms into edge-rich carbon matrix for efficient electrocatalytic hydrogen evolution. Adv. Energy. Mater. 2020, 10, 2000882.
109. Park, J. W.; Park, G.; Kim, M.; et al. Ni-single atom decorated mesoporous carbon electrocatalysts for hydrogen evolution reaction. Chem. Eng. J. 2023, 468, 143733.
110. Zhou, Y.; Yu, Y.; Ma, D.; et al. Atomic Fe dispersed hierarchical mesoporous Fe–N–C nanostructures for an efficient oxygen reduction reaction. ACS. Catal. 2021, 11, 74-81.
111. Zhao, S.; Ban, L.; Zhang, J.; Yi, W.; Sun, W.; Zhu, Z. Cobalt and nitrogen co-doping of porous carbon nanosphere as highly effective catalysts for oxygen reduction reaction and Zn-air battery. Chem. Eng. J. 2021, 409, 128171.
112. Zhao, Y.; Zhu, L.; Tang, J.; et al. Enhancing electrocatalytic performance via thickness-tuned hollow N-doped mesoporous carbon with embedded Co nanoparticles for oxygen reduction reaction. ACS. Nano. 2024, 18, 373-82.
113. Zhao, Y.; Liang, S.; Zhao, Y.; et al. Hollow mesoporous carbon supported Co-modified Cu/Cu2O electrocatalyst for nitrate reduction reaction. J. Colloid. Interface. Sci. 2024, 655, 208-16.
114. Zuo, D.; Song, S.; An, C.; Tang, L.; He, Z.; Zheng, J. Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano. Energy. 2019, 62, 401-9.
115. Gutsch, M.; Leker, J. Global warming potential of lithium-ion battery energy storage systems: a review. J. Energy. Storage. 2022, 52, 105030.
116. Wang, J.; Xia, Y.; Liu, Y.; Li, W.; Zhao, D. Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. Energy. Storage. Mater. 2019, 22, 147-53.
117. Lu, Y.; Zhang, Q.; Li, F.; Chen, J. Emerging lithiated organic cathode materials for lithium-ion full batteries. Angew. Chem. Int. Ed. Engl. 2023, 62, e202216047.
118. Jiang, W.; Yang, X.; Deng, J.; Zhang, J.; Zhang, G. Polydopamine-based materials applied in Li-ion batteries: a review. J. Mater. Sci. 2021, 56, 19359-82.
119. Li, T.; Ding, B.; Wang, J.; et al. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries. ACS. Appl. Mater. Interfaces. 2020, 12, 14993-5001.
120. Dai, J.; Shi, C.; Li, C.; et al. A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine–ceramic composite modification of polyolefin membranes. Energy. Environ. Sci. 2016, 9, 3252-61.
121. Jin, T.; Han, Q.; Jiao, L. Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 2020, 32, e1806304.
122. Xue, P.; Zhai, Y.; Wang, N.; et al. Selenium@Hollow mesoporous carbon composites for high-rate and long-cycling lithium/sodium-ion batteries. Chem. Eng. J. 2020, 392, 123676.
123. Liu, L.; He, Y.; Yin, S.; et al. Bimodal ordered porous hierarchies from cooperative soft-hard template pairs. Matter 2023, 6, 3099-111.
124. Chen, W.; Wan, M.; Liu, Q.; Xiong, X.; Yu, F.; Huang, Y. Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small. Methods. 2019, 3, 1800323.
125. Yu, M.; Sun, M.; Zhu, L.; et al. Double-shell and hierarchical porous nitrogen-doped carbon nanocages as superior anode material for advanced sodium-ion batteries. J. Energy. Storage. 2024, 86, 111211.
126. Min, X.; Xiao, J.; Fang, M.; et al. Potassium-ion batteries: outlook on present and future technologies. Energy. Environ. Sci. 2021, 14, 2186-243.
127. Xu, Y.; Zhang, C.; Zhou, M.; et al. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.
128. Li, X.; Guan, Q.; Zhuang, Z.; et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS. Nano. 2023, 17, 1653-62.
129. Li, W.; Xu, H.; Zhang, H.; et al. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 2023, 14, 5235.
130. Du, H.; Zhao, R.; Yang, Y.; Liu, Z.; Qie, L.; Huang, Y. High-capacity and long-life zinc electrodeposition enabled by a self-healable and desolvation shield for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114789.
131. Zhao, J.; Burke, A. F. Review on supercapacitors: technologies and performance evaluation. J. Energy. Chem. 2021, 59, 276-91.
132. Zhang, Q.; Deng, C.; Huang, Z.; et al. Dual-silica template-mediated synthesis of nitrogen-doped mesoporous carbon nanotubes for supercapacitor applications. Small 2023, 19, e2205725.
133. Kim, M.; Park, T.; Wang, C.; et al. Tailored nanoarchitecturing of microporous ZIF-8 to hierarchically porous double-shell carbons and their intrinsic electrochemical property. ACS. Appl. Mater. Interfaces. 2020, 12, 34065-73.
135. Dubouis, N.; Grimaud, A. The hydrogen evolution reaction: from material to interfacial descriptors. Chem. Sci. 2019, 10, 9165-81.
136. Zhai, W.; Ma, Y.; Chen, D.; Ho, J. C.; Dai, Z.; Qu, Y. Recent progress on the long-term stability of hydrogen evolution reaction electrocatalysts. InfoMat 2022, 4, e12357.
137. Zhang, H.; An, P.; Zhou, W.; et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 2018, 4, eaao6657.
138. Chen, C.; Tang, Z. J.; Li, J. Y.; et al. MnO enabling highly efficient and stable Co-Nx/C for oxygen reduction reaction in both acidic and alkaline media. Adv. Funct. Mater. 2023, 33, 2210143.
139. Wang, X.; Zhang, Q.; Jiang, H.; et al. In situ alloying with hybrid mesoporous Fe–N–C to accelerate the catalysis efficiency of Pt for the oxygen reduction reaction. ACS. Sustainable. Chem. Eng. 2023, 11, 10051-60.
140. Lee, S. H.; Kim, J.; Chung, D. Y.; et al. Design principle of Fe-N-C electrocatalysts: how to optimize multimodal porous structures? J. Am. Chem. Soc. 2019, 141, 2035-45.
141. Zhang, Q.; Xiao, W.; Guo, W. H.; et al. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self-supporting electrode for effective overall water splitting. Adv. Funct. Mater. 2021, 31, 2102117.
142. Li, Z.; Zhang, X.; Cheng, H.; et al. Confined synthesis of 2D nanostructured materials toward electrocatalysis. Adv. Energy. Mater. 2020, 10, 1900486.
143. Guo, Y.; Tang, J.; Henzie, J.; et al. Assembly of hollow mesoporous nanoarchitectures composed of ultrafine Mo2C nanoparticles on N-doped carbon nanosheets for efficient electrocatalytic reduction of oxygen. Mater. Horiz. 2017, 4, 1171-7.
144. Zhang, J. Y.; Xia, C.; Su, Y.; et al. Boosted oxygen kinetics of hierarchically mesoporous Mo2C/C for high-current-density Zn-air battery. Small 2024, 20, e2307378.
145. Li, W.; Liu, J.; Guo, P.; et al. Co/CoP heterojunction on hierarchically ordered porous carbon as a highly efficient electrocatalyst for hydrogen and oxygen evolution. Adv. Energy. Mater. 2021, 11, 2102134.
146. Langevelde PH, Katsounaros I, Koper MT. Electrocatalytic nitrate reduction for sustainable ammonia production. Joule 2021, 5, 290-4.
147. Nguyen, N. N.; Nguyen, A. V. “Nanoreactors” for boosting gas hydrate formation toward energy storage applications. ACS. Nano. 2022, 16, 11504-15.





