REFERENCES
1. Nishioka, S.; Osterloh, F. E.; Wang, X.; Mallouk, T. E.; Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods. Primers. 2023, 3, 42.
2. Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-driven hydrogen production: recent advances, challenges, and future perspectives. ACS. Energy. Lett. 2022, 7, 1043-65.
3. Jiang, Z.; Ye, Z.; Shangguan, W. Recent advances of hydrogen production through particulate semiconductor photocatalytic overall water splitting. Front. Energy. 2022, 16, 49-63.
4. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-8.
5. Schneider, J.; Matsuoka, M.; Takeuchi, M.; et al. Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 2014, 114, 9919-86.
6. Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746-50.
7. Takata, T.; Jiang, J.; Sakata, Y.; et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411-4.
8. Tian, L.; Guan, X.; Dong, Y.; et al. Improved overall water splitting for hydrogen production on aluminium-doped SrTiO3 photocatalyst via tuned surface band bending. Environ. Chem. Lett. 2023, 21, 1257-64.
9. Wang, X.; Maeda, K.; Thomas, A.; et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.
10. Zhao, D.; Guan, X.; Shen, S. Design of polymeric carbon nitride-based heterojunctions for photocatalytic water splitting: a review. Environ. Chem. Lett. 2022, 20, 3505-23.
11. Zhang, K.; Guo, L. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672.
12. Yan, H.; Yang, J.; Ma, G.; et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J. Catal. 2009, 266, 165-8.
13. Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-based photocatalysts. Energy. Environ. Sci. 2018, 11, 1362-91.
14. Ge, H.; Xu, F.; Cheng, B.; Yu, J.; Ho, W. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 2019, 11, 6301-9.
15. Chen, Y.; Wang, L.; Lu, G. M.; Yao, X.; Guo, L. Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. J. Mater. Chem. 2011, 21, 5134-41.
16. Liu, M.; Jing, D.; Zhou, Z.; Guo, L. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.
17. Hao, X.; Hu, Y.; Cui, Z.; Zhou, J.; Wang, Y.; Zou, Z. Self-constructed facet junctions on hexagonal CdS single crystals with high photoactivity and photostability for water splitting. Appl. Catal. B. Environ. 2019, 244, 694-703.
18. Jin, J.; Yu, J.; Liu, G.; Wong, P. K. Single crystal CdS nanowires with high visible-light photocatalytic H2-production performance. J. Mater. Chem. A. 2013, 1, 10927.
19. Xu, Y.; Zhao, W.; Xu, R.; Shi, Y.; Zhang, B. Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chem. Commun. 2013, 49, 9803-5.
20. Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900-9.
21. Wang, H.; Zhang, L.; Chen, Z.; et al. Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234-44.
22. Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787-812.
23. Dong, J.; Duan, L.; Wu, Q.; Yao, W. Facile preparation of Pt/CdS photocatalyst by a modified photoreduction method with efficient hydrogen production. International. J. Hydrogen. Energy. 2018, 43, 2139-47.
24. Xu, Z.; Yue, W.; Li, C.; et al. Rational synthesis of Au-CdS composite photocatalysts for broad-spectrum photocatalytic hydrogen evolution. ACS. Nano. 2023, 17, 11655-64.
25. Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218-30.
26. Jin, H.; Gu, Q.; Chen, B.; et al. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382-94.
27. Dang, Y.; Luo, L.; Wang, W.; et al. Improving the photocatalytic H2 evolution of CdS by adjusting the (002) crystal facet. J. Phys. Chem. C. 2022, 126, 1346-55.
28. Guan, X.; Guo, L. Cocatalytic effect of SrTiO3 on Ag3PO4 toward enhanced photocatalytic water oxidation. ACS. Catal. 2014, 4, 3020-6.
29. Tang, Y.; Ye, F.; Li, B.; et al. Electronic structure modulation of oxygen-enriched defective CdS for efficient photocatalytic H2O2 production. Small 2024, 2400376.
30. Ye, X.; Dong, Y.; Zhang, Z.; et al. Mechanism insights for efficient photocatalytic reforming of formic acid with tunable selectivity: accelerated charges separation and spatially separated active sites. Appl. Catal. B. Environ. 2023, 338, 123073.
31. Ye, X.; Dong, Y.; Zhang, Z.; et al. Syngas production by photoreforming of formic acid with 2D VxW1-xN1.5 solid solution as an efficient cocatalyst. Front. Energy. 2024, 1-10.
32. Shi, J.; Cui, H.; Liang, Z.; et al. The roles of defect states in photoelectric and photocatalytic processes for ZnxCd1-xS. Energy. Environ. Sci. 2011, 4, 466-70.
33. Patriarchea, C.; Vamvasakis, I.; Koutsouroubi, E. D.; Armatas, G. S. Enhancing interfacial charge transfer in mesoporous MoS2/CdS nanojunction architectures for highly efficient visible-light photocatalytic water splitting. Inorg. Chem. Front. 2022, 9, 625-36.
34. Kannan, K.; Chanda, D.; Meshesha, M. M.; Yang, B. Impressive efficiency of zinc oxide-manganese oxide/MAX composite in two-electrode system for photovoltaic-electrolyzer water splitting. Colloids. Surf. A. Physicochem. Eng. Aspects. 2024, 689, 133599.
35. Zong, X.; Yan, H.; Wu, G.; et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation. J. Am. Chem. Soc. 2008, 130, 7176-7.
36. Tian, L.; Min, S.; Wang, F. Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution. Appl. Catal. B. Environ. 2019, 259, 118029.
37. Chen, H.; Jiang, D.; Sun, Z.; Irfan, R. M.; Zhang, L.; Du, P. Cobalt nitride as an efficient cocatalyst on CdS nanorods for enhanced photocatalytic hydrogen production in water. Catal. Sci. Technol. 2017, 7, 1515-22.





