REFERENCES
1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; et al. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-9.
2. Wang, J.; Xu, T.; Wang, W.; Zhang, Z. Miracle in “white”: hexagonal boron nitride. Small 2024, e2400489.
3. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404-9.
4. Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy. Mater. 2018, 8, 1701503.
5. Liu, Y.; Wang, X.; Fan, X.; et al. Coordination-precipitation synthesis of metal sulfide with phase transformation enhanced reactivity against antibiotic-resistant bacteria. Adv. Funct. Mater. 2023, 33, 2212655.
6. Yang, M.; Chang, X.; Wang, L.; et al. Interface modulation of metal sulfide anodes for long-cycle-life sodium-ion batteries. Adv. Mater. 2023, 35, e2208705.
7. Kumbhakar, P.; Chowde, G. C.; Mahapatra, P. L.; et al. Emerging 2D metal oxides and their applications. Mater. Today. 2021, 45, 142-68.
8. Hameed, A.; Batool, M.; Liu, Z.; Nadeem, M. A.; Jin, R. Layered double hydroxide-derived nanomaterials for efficient electrocatalytic water splitting: recent progress and future perspective. ACS. Energy. Lett. 2022, 7, 3311-28.
9. Wang, H.; Song, Y.; Huang, G.; et al. Seeded growth of single-crystal black phosphorus nanoribbons. Nat. Mater. 2024, 23, 470-8.
10. Liu, H.; Du, Y.; Deng, Y.; Ye, P. D. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732-43.
11. Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109-24.
12. Kalantar-zadeh, K.; Ou, J. Z.; Daeneke, T.; Mitchell, A.; Sasaki, T.; Fuhrer, M. S. Two dimensional and layered transition metal oxides. Appl. Mater. Today. 2016, 5, 73-89.
13. Ida, S.; Ogata, C.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E.; Matsumoto, Y. Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). J. Am. Chem. Soc. 2008, 130, 7052-9.
14. Murali, A.; Lokhande, G.; Deo, K. A.; Brokesh, A.; Gaharwar, A. K. Emerging 2D nanomaterials for biomedical applications. Mater. Today. 2021, 50, 276-302.
15. Zhang, Y.; Li, Z.; Zhang, X.; et al. MnO2 nanosheets based catechol oxidase mimics for robust electrochemical sensor: synthesis, mechanism and its application for ultrasensitive and selective detection of dopamine. Chem. Eng. J. 2024, 493, 152656.
16. Dong, T.; Zhang, X.; Yuan, J.; et al. Sensitive lateral flow immunoassay based on specific peptide and superior oxidase mimics with a universal dual-mode significant signal amplification. Anal. Chem. 2023, 95, 12532-40.
17. Bigham, A.; Raucci, M. G.; Zheng, K.; Boccaccini, A. R.; Ambrosio, L. Oxygen-deficient bioceramics: combination of diagnosis, therapy, and regeneration. Adv. Mater. 2023, 35, e2302858.
18. Zhu, X.; Zhang, X.; Li, Y.; Liu, Y. Exploring transition metal oxide-based oxygen vacancy supercapacitors: a review. J. Energy. Storage. 2024, 80, 110350.
19. Matussin, S. N.; Harunsani, M. H.; Khan, M. M. CeO2 and CeO2-based nanomaterials for photocatalytic, antioxidant and antimicrobial activities. J. Rare. Earths. 2023, 41, 167-81.
20. Ren, B.; Wang, Y.; Ou, J. Z. Engineering two-dimensional metal oxides via surface functionalization for biological applications. J. Mater. Chem. B. 2020, 8, 1108-27.
21. Wei, X.; Chen, C.; Fu, X. Z.; Wang, S. Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv. Energy. Mater. 2024, 14, 2303027.
22. Son, S.; Kim, J.; Kim, J.; et al. Cancer therapeutics based on diverse energy sources. Chem. Soc. Rev. 2022, 51, 8201-15.
23. Neal, C. J.; Kolanthai, E.; Wei, F.; Coathup, M.; Seal, S. Surface chemistry of biologically active reducible oxide nanozymes. Adv. Mater. 2024, 36, e2211261.
24. Zhang, X.; Yuan, Z.; Lin, Z.; et al. Covalent coupling-regulated rGO/VN nanocomposite enabling nitrogen defects to remarkably boost the peroxidase-like catalytic efficiency for the ultrasensitive colorimetric assay of uric acid. Anal. Chem. 2025, 97, 5771-80.
25. Chen, K.; Yuan, X.; Tian, Z.; et al. A facile approach for generating ordered oxygen vacancies in metal oxides. Nat. Mater. 2025, 24, 835-42.
27. Sun, W.; Hou, J.; Zhou, Y.; et al. Amorphous FeSnOx nanosheets with hierarchical vacancies for room-temperature sodium-sulfur batteries. Angew. Chem. Int. Ed. Engl. 2024, 63, e202404816.
28. Moon, S.; Lee, D.; Park, J.; Kim, J. 2D amorphous GaOx gate dielectric for β-Ga2O3 field-effect transistors. ACS. Appl. Mater. Interfaces. 2023, 15, 37687-95.
29. He, C.; Hu, X.; Wang, J.; et al. Defect engineered 2D mesoporous Mo-Co-O nanosheets with crystalline-amorphous composite structure for efficient oxygen evolution. Sci. China. Mater. 2022, 65, 3470-8.
30. Zhao, H.; Yue, Y.; Zhang, Y.; Li, L.; Guo, L. Ternary artificial nacre reinforced by ultrathin amorphous alumina with exceptional mechanical properties. Adv. Mater. 2016, 28, 2037-42.
31. Jamesh, M. I.; Sun, X. Recent progress on earth abundant electrocatalysts for oxygen evolution reaction (OER) in alkaline medium to achieve efficient water splitting - a review. J. Power. Sources. 2018, 400, 31-68.
32. Wang, P.; Ma, X.; Hao, X.; Tang, B.; Abudula, A.; Guan, G. Oxygen vacancy defect engineering to promote catalytic activity toward the oxidation of VOCs: a critical review. Catal. Rev. 2024, 66, 586-639.
33. Zhou, Z.; Wang, T.; Hu, T.; et al. Synergistic interaction between metal single-atoms and defective WO3-x nanosheets for enhanced sonodynamic cancer therapy. Adv. Mater. 2024, 36, e2311002.
34. Zhang, J.; Ma, Y.; Sun, Y.; et al. Enhancing deep mineralization of refractory benzotriazole via carbon nanotubes-intercalated cobalt copper bimetallic oxide nanosheets activated peroxymonosulfate process: mechanism, degradation pathway and toxicity. J. Colloid. Interface. Sci. 2022, 628, 448-62.
35. Chen, J.; Yang, Z.; Xie, S. Y.; Gong, F.; Xie, K.; Zhang, Y. H. Ultrathin 2D 2D WO3-x-C3N4 heterostructure-based high-efficiency photocatalyst for selective oxidation of toluene. Diam. Relat. Mater. 2024, 149, 111534.
36. Wu, M.; Zhang, G.; Tong, H.; et al. Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano. Energy. 2021, 79, 105409.
37. Gao, R.; Chen, Q.; Zhang, W.; et al. Oxygen defects-engineered LaFeO3-x nanosheets as efficient electrocatalysts for lithium-oxygen battery. J. Catal. 2020, 384, 199-207.
38. Ming, X.; Guo, A.; Wang, G.; Wang, X. Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation. Sol. Energy. Mater. Sol. Cells. 2018, 185, 333-41.
39. Tu, J.; Li, H.; Liu; X; et al. Giant switchable ferroelectric photovoltage in double-perovskite epitaxial films through chemical negative strain. Sci. Adv. 2025, 11, eads4925.
40. Zhou, X.; Zheng, X.; Yan, B.; Xu, T.; Xu, Q. Defect engineering of two-dimensional WO3 nanosheets for enhanced electrochromism and photoeletrochemical performance. Appl. Surf. Sci. 2017, 400, 57-63.
41. Ren, L.; Li, Y.; Li, Z.; et al. Boosting hydrogen storage performance of MgH2 by oxygen vacancy-rich H-V2O5 nanosheet as an excited H-pump. Nano-Micro. Lett. 2024, 16, 160.
42. Crowley, K.; Ye, G.; He, R.; Abbasi, K.; Gao, X. P. A. α-MoO3 as a conductive 2D oxide: tunable n-type electrical transport via oxygen vacancy and fluorine doping. ACS. Appl. Nano. Mater. 2018, 1, 6407-13.
43. Xiang, T.; Dai, D.; Li, X.; et al. In situ self-derived Co/CoOx active sites from Co-TCPP for the efficient hydrogenolysis of furfuryl alcohol to 1,5-pentanediol. Appl. Catal. B-Environ. 2024, 348, 123841.
44. Liu, Y.; Guo, D.; Wu, K.; Guo, J.; Li, Z. Simultaneous enhanced electrochemical and photoelectrochemical properties of α-Fe2O3/graphene by hydrogen annealing. Mater. Res. Express. 2020, 7, 025032.
45. Chang, M.; Dai, X.; Dong, C.; et al. Two-dimensional persistent luminescence “optical battery” for autophagy inhibition-augmented photodynamic tumor nanotherapy. Nano. Today. 2022, 42, 101362.
46. Zhang, Q.; Chen, D.; Song, Q.; et al. Holey defected TiO2 nanosheets with oxygen vacancies for efficient photocatalytic hydrogen production from water splitting. Surf. Interfaces. 2021, 23, 100979.
47. Wang, X.; Xue, S.; Huang, M.; et al. Pressure-induced engineering of surface oxygen vacancies on metal oxides for heterogeneous photocatalysis. J. Am. Chem. Soc. 2025, 147, 4945-51.
48. Ding, Q.; Dou, Y.; Liao, Y.; et al. Oxygen vacancy-rich ultrathin Co3O4 nanosheets as nanofillers in solid-polymer electrolyte for high-performance lithium metal batteries. Catalysts 2023, 13, 711.
49. Geng, B.; Zhang, S.; Yang, X.; et al. Cu2-xO@TiO2-y Z-scheme heterojunctions for sonodynamic-chemodynamic combined tumor eradication. Chem. Eng. J. 2022, 435, 134777.
50. Zhang, L.; Zhao, S.; Ouyang, J.; Deng, L.; Liu, Y. N. Oxygen-deficient tungsten oxide perovskite nanosheets-based photonic nanomedicine for cancer theranostics. Chem. Eng. J. 2022, 431, 133273.
51. Cao, Y.; Wu, T.; Dai, W.; Dong, H.; Zhang, X. TiO2 Nanosheets with the Au nanocrystal-decorated edge for mitochondria-targeting enhanced sonodynamic therapy. Chem. Mater. 2019, 31, 9105-14.
52. Liu, J.; Chen, T.; Jian, P.; Wang, L. Hierarchical 0D/2D Co3O4 hybrids rich in oxygen vacancies as catalysts towards styrene epoxidation reaction. Chinese. J. Catal. 2018, 39, 1942-50.
53. Zhang, J.; Ma, Y.; Sun, Y.; et al. Reduced porous 2D Co3O4 enhanced peroxymonosulfate activation to form multi-reactive oxygen species: the key role of oxygen vacancies. Sep. Purif. Technol. 2024, 330, 125409.
54. Geng, B.; Xu, S.; Li, P.; et al. Platinum crosslinked carbon dot@TiO2-x p-n junctions for relapse-free sonodynamic tumor eradication via high-yield ROS and GSH depletion. Small 2022, 18, e2103528.
55. Ren, L.; Zhu, W.; Li, Y.; et al. Oxygen vacancy-rich 2D TiO2 nanosheets: a bridge toward high stability and rapid hydrogen storage kinetics of nano-confined MgH2. Nano-Mmicro. Lett. 2022, 14, 144.
56. Dong, H. D.; Zhao, J. P.; Peng, M. X.; et al. Pd promoted oxygen species activation of ZnO nanosheets for enhanced hydrogen sensing performance and its DFT investigation. Maters. Res. Bull. 2024, 177, 112881.
57. Zhang, Y. H.; Peng, M. X.; Yue, L. J.; et al. A room-temperature aniline sensor based on Ce doped ZnO porous nanosheets with abundant oxygen vacancies. J. Alloy. Compd. 2021, 885, 160988.
58. Zheng, L.; Zhao, Y.; Bao, Z.; et al. High-valence Mo doping and oxygen vacancy engineering to promote morphological evolution and oxygen evolution reaction activity. ACS. Appl. Mater. Interfaces. 2023, 15, 43953-62.
59. Wang, G.; Zhang, S.; Qian, R.; Wen, Z. Atomic-thick TiO2(B) nanosheets decorated with ultrafine Co3O4 nanocrystals as a highly efficient catalyst for lithium-oxygen battery. ACS. Appl. Mater. Interfaces. 2018, 10, 41398-406.
60. Liu, Y.; Ma, C.; Zhang, Q.; et al. 2D electron gas and oxygen vacancy induced high oxygen evolution performances for advanced Co3O4/CeO2 nanohybrids. Adv. Mater. 2019, 31, e1900062.
61. Yuan, Y.; Liu, Y.; Xie, X.; et al. 2D defect-engineered Ag-doped γ- Fe2O3/BiVO4: the effect of noble metal doping and oxygen vacancies on exciton-triggering photocatalysis production of singlet oxygen. Chemosphere 2023, 322, 138176.
62. Zhu, Y.; Guo, F.; Wei, Q.; et al. Engineering the metal/oxide interfacial O-filling effect to tailor oxygen spillover for efficient acidic water oxidation. Adv. Funct. Mater. 2025, 35, 2421354.
63. Yu, Z.; Yu, D.; Wang, X.; et al. Photoinduced formation of oxygen vacancies on Mo-incorporated WO3 for direct oxidation of benzene to phenol by air. J. Am. Chem. Soc. 2025, 147, 13885-92.
64. Zhao, S.; Yang, Y.; Bi, F.; et al. Oxygen vacancies in the catalyst: efficient degradation of gaseous pollutants. Chem. Eng. J. 2023, 454, 140376.
65. Kong, X.; Xu, Y.; Cui, Z.; et al. Defect enhances photocatalytic activity of ultrathin TiO2 (B) nanosheets for hydrogen production by plasma engraving method. Appl. Catal. B-Environ. 2018, 230, 11-7.
66. Xu, L.; Jiang, Q.; Xiao, Z.; et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. Engl. 2016, 55, 5277-81.
67. Ding, S.; Sun, Y.; Lou, F.; et al. Plasma-regulated two-dimensional high entropy oxide arrays for synergistic hydrogen evolution: from theoretical prediction to electrocatalytic applications. J. Power. Sources. 2022, 520, 230873.
68. Siebert, J. P.; Hamm, C. M.; Birkel, C. S. Microwave heating and spark plasma sintering as non-conventional synthesis methods to access thermoelectric and magnetic materials. Appl. Phys. Rev. 2019, 6, 041314.
69. Zhao, C.; Zhang, H.; Si, W.; Wu, H. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun. 2016, 7, 12543.
70. Chen, T.; Ma, F.; Chen, Z.; et al. Engineering oxygen vacancies of 2D WO3 for visible-light-driven benzene hydroxylation with dioxygen. Chem. Eng. J. 2023, 468, 143666.
71. Wei, Z.; Gasparyan, M.; Liu, L.; et al. Microwave-exfoliated 2D oligo-layer MoO3-x nanosheets with outstanding molecular adsorptivity and room-temperature gas sensitivity on ppb level. Chem. Eng. J. 2023, 454, 140076.
72. Hu, R.; Wei, L.; Xian, J.; et al. Microwave shock process for rapid synthesis of 2D porous La0.2Sr0.8CoO3 perovskite as an efficient oxygen evolution reaction catalyst. Acta. Phys-Chim. Sin. 2023, 0, 2212025.
73. Asif, M. B.; Kim, S. J.; Nguyen, T. S.; Mahmood, J.; Yavuz, C. T. Highly efficient micropollutant decomposition by ultrathin amorphous cobalt-iron oxide nanosheets in peroxymonosulfate-mediated membrane-confined catalysis. Chem. Eng. J. 2024, 485, 149352.
74. Li, X.; Xiao, L.; Zhou, L.; et al. Adaptive bifunctional electrocatalyst of amorphous CoFe oxide @ 2D black phosphorus for overall water splitting. Angew. Chem. Int. Ed. Engl. 2020, 59, 21106-13.
75. Li, X.; Wang, Y.; Wang, J.; et al. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 2020, 32, e2003414.
76. Zhong, H.; Gao, G.; Wang, X.; et al. Ion irradiation inducing oxygen vacancy-rich NiO/NiFe2O4 heterostructure for enhanced electrocatalytic water splitting. Small 2021, 17, e2103501.
77. Ji, D.; Lee, Y.; Nishina, Y.; et al. Angstrom-confined electrochemical synthesis of sub-unit-cell non-van der Waals 2D metal oxides. Adv. Mater. 2023, 35, e2301506.
78. Yan, J.; Luo, Y.; Zhu, M.; et al. General and scalable synthesis of mesoporous 2D MZrO2 (M = Co, Mn, Ni, Cu, Fe) nanocatalysts by amorphous-to-crystalline transformation. Small 2024, 20, e2308016.
79. Yang, X.; Shi, Y.; Xie, K.; Fang, S.; Zhang, Y.; Deng, Y. Cocrystallization enabled spatial self-confinement approach to synthesize crystalline porous metal oxide nanosheets for gas sensing. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207816.
80. Prusty, G.; Lee, J. T.; Seifert, S.; Muhoberac, B. B.; Sardar, R. Ultrathin plasmonic tungsten oxide quantum wells with controllable free carrier densities. J. Am. Chem. Soc. 2020, 142, 5938-42.
81. Fabbri, E.; Schmidt, T. J. Oxygen evolution reaction - the enigma in water electrolysis. ACS. Catal. 2018, 8, 9765-74.
82. Wang, Z.; Wang, L. Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat 2021, 3, e12075.
83. Ye, K.; Li, K.; Lu, Y.; et al. An overview of advanced methods for the characterization of oxygen vacancies in materials. TrAC. Trends. Anal. Chem. 2019, 116, 102-8.
84. Wei, R.; Lu, Y.; Xu, Y. The role of oxygen vacancies in metal oxides for rechargeable ion batteries. Sci. China. Chem. 2021, 64, 1826-53.
85. Feng, H.; Xu, Z.; Ren, L.; et al. Activating titania for efficient electrocatalysis by vacancy engineering. ACS. Catal. 2018, 8, 4288-93.
86. Chen, X.; Chen, J.; Chen, H.; et al. Promoting water dissociation for efficient solar driven CO2 electroreduction via improving hydroxyl adsorption. Nat. Commun. 2023, 14, 751.
87. Yin, X.; Wang, Y.; Chang, T. H.; et al. Memristive behavior enabled by amorphous-crystalline 2D oxide heterostructure. Adv. Mater. 2020, 32, e2000801.
88. Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 2014, 1, 571-89.
89. Liu, Y.; Sun, X.; Wang, Y.; et al. Activating MnO2 nanosheet arrays for accelerated water oxidation through the synergic effect of Ni loading and O vacancies. Chem. Eng. J. 2024, 493, 152644.
90. Jiang, X.; Zhang, Y.; Jiang, J.; et al. Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. J. Phys. Chem. C. 2012, 116, 22619-24.
91. Kong, M.; Li, Y.; Chen, X.; et al. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414-7.
92. Lu, Y.; Deng, H.; Pan, T.; Liao, X.; Zhang, C.; He, H. Effective toluene ozonation over δ-MnO2: oxygen vacancy-induced reactive oxygen species. Environ. Sci. Technol. 2023, 57, 2918-27.
93. Sonkin, D.; Thomas, A.; Teicher, B. A. Cancer treatments: past, present, and future. Cancer. Genet. 2024, 286-287, 18-24.
94. Vachani, A.; Sequist, L. V.; Spira, A. AJRCCM: 100-YEAR Anniversary. The shifting landscape for lung cancer: past, present, and future. Am. J. Respir. Crit. Care. Med. 2017, 195, 1150-60.
95. Zhao, B.; Ye, J.; Chen, Z.; et al. Mitochondria-targeted photoredox catalysis activates pyroptosis for effective tumor therapy. Adv. Funct. Mater. 2025, 35, 2417681.
96. Liang, H.; Xi, H.; Liu, S.; Zhang, X.; Liu, H. Modulation of oxygen vacancy in tungsten oxide nanosheets for Vis-NIR light-enhanced electrocatalytic hydrogen production and anticancer photothermal therapy. Nanoscale 2019, 11, 18183-90.
97. Beik, J.; Abed, Z.; Ghoreishi, F. S.; et al. Nanotechnology in hyperthermia cancer therapy: from fundamental principles to advanced applications. J. Control. Release. 2016, 235, 205-21.
98. Lin, Z.; Yuan, J.; Niu, L.; et al. Oxidase mimicking nanozyme: classification, catalytic mechanisms and sensing applications. Coordin. Chem. Rev. 2024, 520, 216166.
99. Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv. Drug. Deliv. Rev. 2016, 98, 3-18.
100. Choi, H. S.; Liu, W.; Misra, P.; et al. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165-70.
101. Guo, L.; Panderi, I.; Yan, D. D.; et al. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS. Nano. 2013, 7, 8780-93.
103. Zheng, X.; Wang, X.; Mao, H.; Wu, W.; Liu, B.; Jiang, X. Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. Nat. Commun. 2015, 6, 5834.
104. Song, G.; Hao, J.; Liang, C.; et al. Degradable molybdenum oxide nanosheets with rapid clearance and efficient tumor homing capabilities as a therapeutic nanoplatform. Angew. Chem. Int. Ed. Engl. 2016, 55, 2122-6.
105. Liu, D.; Wu, H.; Kong, X.; et al. Biomimetic layered molybdenum oxide nanosheets with excellent photothermal property combined with chemotherapy for enhancing anti-tumor immunity. Appl. Mater. Today. 2024, 36, 102027.
106. Cai, Y.; Wei, Z.; Song, C.; Tang, C.; Han, W.; Dong, X. Optical nano-agents in the second near-infrared window for biomedical applications. Chem. Soc. Rev. 2019, 48, 22-37.
107. Yang, B.; Chen, Y.; Shi, J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019, 119, 4881-985.
108. Deepagan, V. G.; You, D. G.; Um, W.; et al. Long-circulating Au-TiO2 nanocomposite as a sonosensitizer for ROS-mediated eradication of cancer. Nano. Lett. 2016, 16, 6257-64.
109. You, D. G.; Deepagan, V. G.; Um, W.; et al. ROS-generating TiO2 nanoparticles for non-invasive sonodynamic therapy of cancer. Sci. Rep. 2016, 6, 23200.
110. Liang, S.; Deng, X.; Xu, G.; et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy. Adv. Funct. Mater. 2020, 30, 1908598.
111. Wang, X.; Zhong, X.; Bai, L.; et al. Ultrafine titanium monoxide (TiO1+x) nanorods for enhanced sonodynamic therapy. J. Am. Chem. Soc. 2020, 142, 6527-37.
112. Bansal, A.; Simon, M. C. Glutathione metabolism in cancer progression and treatment resistance. J. Cell. Biol. 2018, 217, 2291-8.
113. Kennedy, L.; Sandhu, J. K.; Harper, M. E.; Cuperlovic-Culf, M. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules 2020, 10, 1429.
114. Zhang, C.; Bu, W.; Ni, D.; et al. Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew. Chem. Int. Ed. Engl. 2016, 55, 2101-6.
115. Hu, T.; Xue, B.; Meng, F.; et al. Preparation of 2D polyaniline/MoO3-x superlattice nanosheets via intercalation-induced morphological transformation for efficient chemodynamic therapy. Adv. Healthc. Mater. 2023, 12, e2202911.
116. Yuan, X.; Wang, L.; Hu, M.; et al. Oxygen vacancy-driven reversible free radical catalysis for environment-adaptive cancer chemodynamic therapy. Angew. Chem. Int. Ed. Engl. 2021, 60, 20943-51.
117. Chen, Y.; Tan, C.; Zhang, H.; Wang, L. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681-701.
118. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-44.
119. Zhang, X.; Zu, H.; Guo, Y.; Liu, Q.; Liu, Z.; Hu, C. Morphology-controlled synthesis of molybdenum oxide with tunable plasmon absorption for phothermal therapy of cancer. ChemNanoMat 2020, 6, 1407-16.
120. Steinberg, I.; Huland, D. M.; Vermesh, O.; Frostig, H. E.; Tummers, W. S.; Gambhir, S. S. Photoacoustic clinical imaging. Photoacoustics 2019, 14, 77-98.
121. Fu, Q.; Zhu, R.; Song, J.; Yang, H.; Chen, X. Photoacoustic imaging: contrast agents and their biomedical applications. Adv. Mater. 2019, 31, e1805875.
122. Gong, F.; Yang, N.; Wang, Y.; et al. Oxygen-deficient bimetallic oxide FeWOx nanosheets as peroxidase-like nanozyme for sensing cancer via photoacoustic imaging. Small 2020, 16, e2003496.
123. Jiang, D.; Yang, C.; Fan, Y.; et al. Ultra-sensitive photoelectrochemical aptamer biosensor for detecting E. coli O157:H7 based on nonmetallic plasmonic two-dimensional hydrated defective tungsten oxide nanosheets coupling with nitrogen-doped graphene quantum dots (dWO3·H2O@N-GQDs). Biosens. Bioelectron. 2021, 183, 113214.
124. Furuya, E. Y.; Lowy, F. D. Antimicrobial-resistant bacteria in the community setting. Nat. Rev. Microbiol. 2006, 4, 36-45.
125. Wang, L.; Zhang, X.; Yu, X.; et al. An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity. Adv. Mater. 2019, 31, e1901965.
126. Ma, H.; Yang, S.; li, M.; Tang, X.; Xia, Z.; Dai, R. Preparation and photocatalytic antibacterial mechanism of porous metastable β-Bi2O3 nanosheets. Ceram. Int. 2021, 47, 34092-105.
127. Pancielejko, A.; Łuczak, J.; Lisowski, W.; et al. Ionic liquid as morphology-directing agent of two-dimensional Bi2WO6: new insight into photocatalytic and antibacterial activity. Appl. Surf. Sci. 2022, 599, 153971.





