REFERENCES

1. Chernyak, S. A.; Corda, M.; Dath, J. P.; Ordomsky, V. V.; Khodakov, A. Y. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem. Soc. Rev. 2022, 51, 7994-8044.

2. Nawaz, Z. Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev. Chem. Eng. 2015, 31, 413-36.

3. Mériaudeau, P.; Thangaraj, A.; Dutel, J. F.; Naccache, C. Studies on PtxSny Bimetallics in NaY. II. Further characterization and catalytic properties in the dehydrogenation and hydrogenolysis of propane. J. Catal. 1997, 167, 180-6.

4. Zhang, Y.; Yao, W.; Fang, H.; Hu, A.; Huang, Z. Catalytic alkane dehydrogenations. Sci. Bull. 2015, 60, 1316-31.

5. Feng, Z.; Liu, X.; Wang, Y.; Meng, C. Recent advances on gallium-modified ZSM-5 for conversion of light hydrocarbons. Molecules 2021, 26, 2234.

6. Shi, L.; Wang, Y.; Yan, B.; Song, W.; Shao, D.; Lu, A. H. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts. Chem. Commun. 2018, 54, 10936-46.

7. Li, C.; Wang, G. Dehydrogenation of light alkanes to mono-olefins. Chem. Soc. Rev. 2021, 50, 4359-81.

8. Chen, S.; Chang, X.; Sun, G.; et al. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies. Chem. Soc. Rev. 2021, 50, 3315-54.

9. Dai, Y.; Gao, X.; Wang, Q.; Wan, X.; Zhou, C.; Yang, Y. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 2021, 50, 5590-630.

10. Farshi, A.; Shaiyegh, F.; Burogerdi, S. H.; Dehgan, A. FCC process role in propylene demands. Petrol. Sci. Technol. 2011, 29, 875-85.

11. Monai, M.; Gambino, M.; Wannakao, S.; Weckhuysen, B. M. Propane to olefins tandem catalysis: a selective route towards light olefins production. Chem. Soc. Rev. 2021, 50, 11503-29.

12. Sinfelt, J. Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys. J. Catal. 1972, 24, 283-96.

13. Dry, M. E.; Hoogendoorn, J. C. Technology of the Fischer-Tropsch process. Catal. Rev. 1981, 23, 265-78.

14. Besoukhanova, C.; Guidot, J.; Barthomeuf, D.; Breysse, M.; Bernard, J. R. Platinum–zeolite interactions in alkaline L zeolites. Correlations between catalytic activity and platinum state. J. Chem. Soc. Faraday. Trans. 1. 1981, 77, 1595-604.

15. Balakrishnan, K. FTIR study of bimetallic Pt-Sn/Al2O3 catalysts. J. Catal. 1992, 138, 491-9.

16. Lieske, H.; Litez, G.; Spindler, H.; Völter, J. Reactions of platinum in oxygen- and hydrogen-treated Pt/γ-Al2O3 catalysts I. Temperature-programmed reduction, adsorption, and redispersion of platinum. J. Catal. 1983, 81, 8-16.

17. Melnikov, D. P.; Novikov, A. A.; Glotov, A. P.; et al. Dehydrogenation of light alkanes (a review). Pet. Chem. 2022, 62, 1027-46.

18. Wang, G.; Zhu, X.; Li, C. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes. Chem. Rec. 2020, 20, 604-16.

19. Ni, L.; Khare, R.; Bermejo-Deval, R.; et al. Highly active and selective sites for propane dehydrogenation in zeolite Ga-BEA. J. Am. Chem. Soc. 2022, 144, 12347-56.

20. Long, J.; Tian, S.; Wei, S.; et al. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: steaming-induced restructuring of Co2+ active sites. Appl. Surf. Sci. 2023, 614, 156238.

21. Sun, Q.; Wang, N.; Fan, Q.; et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. Engl. 2020, 59, 19450-9.

22. Zeng, L.; Cheng, K.; Sun, F.; et al. Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts. Science 2024, 383, 998-1004.

23. Chai, Y.; Shang, W.; Li, W.; et al. Noble metal particles confined in zeolites: synthesis, characterization, and applications. Adv. Sci. 2019, 6, 1900299.

24. Zhang, Q.; Gao, S.; Yu, J. Metal sites in zeolites: synthesis, characterization, and catalysis. Chem. Rev. 2023, 123, 6039-106.

25. Xiao, L.; Shan, Y.; Sui, Z.; et al. Beyond the reverse Horiuti–Polanyi mechanism in propane dehydrogenation over Pt catalysts. ACS. Catal. 2020, 10, 14887-902.

26. Liu, S.; Zhang, B.; Liu, G. Metal-based catalysts for the non-oxidative dehydrogenation of light alkanes to light olefins. React. Chem. Eng. 2021, 6, 9-26.

27. Li, S.; Yan, H.; Liu, Y.; et al. Rational screening of transition metal single-atom-doped ZSM-5 zeolite catalyst for naphtha cracking from microkinetic analysis. Chem. Eng. J. 2022, 445, 136670.

28. Lian, Z.; Ali, S.; Liu, T.; Si, C.; Li, B.; Su, D. S. Revealing the Janus character of the coke precursor in the propane direct dehydrogenation on Pt catalysts from a kMC simulation. ACS. Catal. 2018, 8, 4694-704.

29. Saerens, S.; Sabbe, M. K.; Galvita, V. V.; Redekop, E. A.; Reyniers, M.; Marin, G. B. The positive role of hydrogen on the dehydrogenation of propane on Pt(111). ACS. Catal. 2017, 7, 7495-508.

30. Yang, M. L.; Zhu, Y. A.; Fan, C.; Sui, Z. J.; Chen, D.; Zhou, X. G. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Phys. Chem. Chem. Phys. 2011, 13, 3257-67.

31. Hauser, A. W.; Gomes, J.; Bajdich, M.; Head-Gordon, M.; Bell, A. T. Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes. Phys. Chem. Chem. Phys. 2013, 15, 20727-34.

32. Huang, Y. A.; Cheng, G.; Lei, M.; et al. Decoding the kinetic complexity of Pt-catalyzed n-butane dehydrogenation by machine learning and microkinetic analysis. ACS. Catal. 2024, 14, 7978-95.

33. Yang, B.; Gong, X. Q.; Wang, H. F.; Cao, X. M.; Rooney, J. J.; Hu, P. Evidence to challenge the universality of the Horiuti-Polanyi mechanism for hydrogenation in heterogeneous catalysis: origin and trend of the preference of a non-Horiuti-Polanyi mechanism. J. Am. Chem. Soc. 2013, 135, 15244-50.

34. Lee, I.; Zaera, F. Infrared spectroscopy characterization of the chemistry of C4 hydrocarbons on Pt(111) single-crystal surfaces. J. Phys. Chem. C. 2007, 111, 10062-72.

35. Vajda, S.; Pellin, M. J.; Greeley, J. P.; et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 2009, 8, 213-6.

36. Kumar, P.; Srivastava, V. C. Ethane and propane dehydrogenation on small platinum clusters supported on silica: an ab initio molecular dynamics and DFT study. Chempluschem 2024, 89, e202300347.

37. Liu, G.; Zeng, L.; Zhao, Z.; Tian, H.; Wu, T.; Gong, J. Platinum-modified ZnO/Al2O3 for propane dehydrogenation: minimized platinum usage and improved catalytic stability. ACS. Catal. 2016, 6, 2158-62.

38. Zhao, Z. J.; Wu, T.; Xiong, C.; et al. Hydroxyl-mediated non-oxidative propane dehydrogenation over VOx/γ-Al2O3 catalysts with improved stability. Angew. Chem. Int. Ed. Engl. 2018, 57, 6791-5.

39. Bai, P.; Yang, M.; Chen, X.; et al. Modulation of surface chemistry by boron modification to achieve a superior VOX/Al2O3 catalyst in propane dehydrogenation. Catal. Today. 2022, 402, 248-58.

40. Shee, D.; Sayari, A. Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts. Appl. Catal. A. Gen. 2010, 389, 155-64.

41. Chen, S.; Xu, Y.; Chang, X.; et al. Defective TiOx overlayers catalyze propane dehydrogenation promoted by base metals. Science 2024, 385, 295-300.

42. Xie, Z.; Yu, T.; Song, W.; et al. Highly active nanosized anatase TiO2-x oxide catalysts in situ formed through reduction and ostwald ripening processes for propane dehydrogenation. ACS. Catal. 2020, 10, 14678-93.

43. Li, C.; Guo, X.; Shang, Q.; et al. Defective TiO2 for propane dehydrogenation. Ind. Eng. Chem. Res. 2020, 59, 4377-87.

44. Xu, Y.; Chen, S.; Chang, X.; et al. Ultrathin TiOx nanosheets rich in tetracoordinated Ti sites for propane dehydrogenation. ACS. Catal. 2023, 13, 6104-13.

45. Otroshchenko, T.; Kondratenko, V. A.; Rodemerck, U.; Linke, D.; Kondratenko, E. V. ZrO2-based unconventional catalysts for non-oxidative propane dehydrogenation: factors determining catalytic activity. J. Catal. 2017, 348, 282-90.

46. Zhang, Y.; Zhao, Y.; Otroshchenko, T.; et al. The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation. J. Catal. 2019, 371, 313-24.

47. Zhang, Y.; Zhao, Y.; Otroshchenko, T.; et al. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C-H bond activation. Nat. Commun. 2018, 9, 3794.

48. Chen, K.; Bell, A. T.; Iglesia, E. The relationship between the electronic and redox properties of dispersed metal oxides and their turnover rates in oxidative dehydrogenation reactions. J. Catal. 2002, 209, 35-42.

49. Latimer, A. A.; Kulkarni, A. R.; Aljama, H.; et al. Understanding trends in C-H bond activation in heterogeneous catalysis. Nat. Mater. 2017, 16, 225-9.

50. Konnov, S. V.; Bruter, D. V.; Pavlov, V. S.; Ivanova, I. I. State-of-the-art strategies for the synthesis of zeolite-encapsulated subnanometric metal clusters. Inorg. Chem. Front. 2024, 11, 3669-706.

51. Buchmeiser, M. R. Recent advances in the synthesis of supported metathesis catalysts. New. J. Chem. 2004, 28, 549.

52. Martínez, C.; Corma, A. Inorganic molecular sieves: preparation, modification and industrial application in catalytic processes. Coord. Chem. Rev. 2011, 255, 1558-80.

53. Centi, G.; Trifiro, F. Catalytic behavior of V-containing zeolites in the transformation of propane in the presence of oxygen. Appl. Catal. A. Gen. 1996, 143, 3-16.

54. Cola PL, Gläser R, Weitkamp J. Non-oxidative propane dehydrogenation over Pt–Zn-containing zeolites. Appl. Catal. A. Gen. 2006, 306, 85-97.

55. Ponomaryov, A. B.; Smirnov, A. V.; Pisarenko, E. V.; Shostakovsky, M. V. PtSn/MFI catalysts for propane dehydrogenation prepared by an impregnation–calcination–washing method. Appl. Catal. A. Gen. 2024, 673, 119588.

56. Ponomaryov, A. B.; Smirnov, A. V.; Pisarenko, E. V.; Shostakovsky, M. V. Enhanced Pt dispersion and catalytic properties of NaCl-promoted Pt/MFI zeolite catalysts for propane dehydrogenation. Micropor. Mesopor. Mat. 2022, 339, 112010.

57. Liu, S.; Wu, G.; Gong, J.; et al. Synthesis gold and jade type core shell structure Pt@Sn in deboronated MWW zeolite and its good performance for light alkane dehydrogenation. Chem. Eng. J. 2023, 476, 146410.

58. Zhang, B.; Song, M.; Xu, M.; Liu, G. Recent advances in metal−zeolite catalysts for direct propane dehydrogenation. Energy. Fuels. 2023, 37, 19419-32.

59. Wang, H.; Zhang, X.; Su, Z.; Chen, T. Dealuminated Beta stabilized bimetallic PtCo nanoparticles for oxidative dehydrogenation of propane with CO2. Fuel 2024, 358, 130248.

60. Ryoo, R.; Kim, J.; Jo, C.; et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 2020, 585, 221-4.

61. Li, J.; Zhang, Q.; He, G.; et al. Silanol-stabilized atomically dispersed Ptδ+-Ox-Sn active sites in protozeolite for propane dehydrogenation. J. Am. Chem. Soc. 2024, 146, 24358-67.

62. Ćurković, L.; Cerjan-Stefanović, Š.; Filipan, T. Metal ion exchange by natural and modified zeolites. Water. Res. 1997, 31, 1379-82.

63. Yuna, Z. Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environm. Eng. Sci. 2016, 33, 443-54.

64. Wang, S.; Peng, Y. Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 2010, 156, 11-24.

65. Nozik, D.; Tinga, F. M. P.; Bell, A. T. Propane dehydrogenation and cracking over Zn/H-MFI prepared by solid-state ion exchange of ZnCl2. ACS. Catal. 2021, 11, 14489-506.

66. Liu, H.; Liu, L.; Qin, Q.; et al. Comparative study of PtM (M=Cu, Zn, Ga, Mn, Fe, In, Ce) bimetals on zincosilicate for propane dehydrogenation reaction. Chemistry 2024, 30, e202402764.

67. Katranas, T. K.; Triantafyllidis, K. S.; Vlessidis, A. G.; Evmiridis, N. P. Propane reactions over faujasite structure zeolites type-X and USY: effect of zeolite silica over alumina ratio, strength of acidity and kind of exchanged metal ion. Catal. Lett. 2007, 118, 79-85.

68. Englert, A.; Rubio, J. Characterization and environmental application of a Chilean natural zeolite. Int. J. Miner. Process. 2005, 75, 21-9.

69. Alshameri, A.; Ibrahim, A.; Assabri, A. M.; Lei, X.; Wang, H.; Yan, C. The investigation into the ammonium removal performance of Yemeni natural zeolite: modification, ion exchange mechanism, and thermodynamics. Powder. Technol. 2014, 258, 20-31.

70. Agrawal, S.; Mantri, K.; Sharma, V.; Jasra, R. V.; Munshi, P. Catalytic dehydrogenation of cyclohexanone to phenol over the Ru, Rh, Pd and Pt surfaces in sub-critical water. Catal. Lett. 2022, 152, 2119-30.

71. Weisz, P. Catalysis by crystalline aluminosilicates II. Molecular-shape selective reactions. J. Catal. 1962, 1, 307-12.

72. Ou, Z.; Li, Y.; Wu, W.; et al. Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges. Chem. Eng. J. 2022, 430, 132925.

73. Sun, Q.; Wang, N.; Yu, J. Advances in catalytic applications of zeolite-supported metal catalysts. Adv. Mater. 2021, 33, e2104442.

74. Qu, Z.; Sun, Q. Advances in zeolite-supported metal catalysts for propane dehydrogenation. Inorg. Chem. Front. 2022, 9, 3095-115.

75. Otto, T.; Zones, S. I.; Iglesia, E. Synthetic strategies for the encapsulation of nanoparticles of Ni, Co, and Fe oxides within crystalline microporous aluminosilicates. Micropor. Mesopor. Mat. 2018, 270, 10-23.

76. Otto, T.; Zones, S. I.; Hong, Y.; Iglesia, E. Synthesis of highly dispersed cobalt oxide clusters encapsulated within LTA zeolites. J. Catal. 2017, 356, 173-85.

77. Otto, T.; Ramallo-López, J. M.; Giovanetti, L. J.; Requejo, F. G.; Zones, S. I.; Iglesia, E. Synthesis of stable monodisperse AuPd, AuPt, and PdPt bimetallic clusters encapsulated within LTA-zeolites. J. Catal. 2016, 342, 125-37.

78. Goel, S.; Zones, S. I.; Iglesia, E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 2014, 136, 15280-90.

79. Wu, Z.; Goel, S.; Choi, M.; Iglesia, E. Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity. J. Catal. 2014, 311, 458-68.

80. Choi, M.; Wu, Z.; Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 2010, 132, 9129-37.

81. Goel, S.; Wu, Z.; Zones, S. I.; Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 2012, 134, 17688-95.

82. Wang, Y.; Hu, Z.; Lv, X.; Chen, L.; Yuan, Z. Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. J. Catal. 2020, 385, 61-9.

83. Liu, L.; Lopez-haro, M.; Lopes, C. W.; et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 2020, 3, 628-38.

84. Liu, L.; Lopez-Haro, M.; Lopes, C. W.; et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 2019, 18, 866-73.

85. Dou, X.; Li, W.; Zhang, K.; et al. Size-dependent structural features of subnanometer PtSn catalysts encapsulated in zeolite for alkane dehydrogenation. ACS. Catal. 2024, 14, 2859-71.

86. Zhu, J.; Osuga, R.; Ishikawa, R.; et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation. Angew. Chem. Int. Ed. Engl. 2020, 59, 19669-74.

87. Song, S.; Li, J.; Wu, Z.; et al. In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation. AIChE. J. 2022, 68, e17451.

88. Xu, G.; Zhang, X.; Dong, Z.; et al. Ferric single-site catalyst confined in a zeolite framework for propane dehydrogenation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202305915.

89. Liu, L.; Díaz, U.; Arenal, R.; Agostini, G.; Concepción, P.; Corma, A. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 2017, 16, 132-8.

90. Feng, H.; Elam, J. W.; Libera, J. A.; Setthapun, W.; Stair, P. C. Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chem. Mater. 2010, 22, 3133-42.

91. Christensen, S. T.; Feng, H.; Libera, J. L.; et al. Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano. Lett. 2010, 10, 3047-51.

92. Feng, H.; Libera, J. A.; Stair, P. C.; Miller, J. T.; Elam, J. W. Subnanometer palladium particles synthesized by atomic layer deposition. ACS. Catal. 2011, 1, 665-73.

93. Feng, H.; Lu, J.; Stair, P. C.; Elam, J. W. Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: enhanced stability and reactivity. Catal. Lett. 2011, 141, 512-7.

94. Xu, D.; Yin, J.; Gao, Y.; Zhu, D.; Wang, S. Atomic-scale designing of zeolite based catalysts by atomic layer deposition. Chemphyschem 2021, 22, 1287-301.

95. Zhang, B.; Wu, Z.; Xing, S.; et al. Small-molecule modification provides Pt nucleation sites for enhanced propane dehydrogenation performance. J. Phys. Chem. C. 2023, 127, 5754-62.

96. Yang, F.; Zhang, J.; Chen, J.; et al. Promoting propane dehydrogenation over Zn/hollow porous silicalite-1 catalysts via modulating the electronic structures of Pt. Fuel 2024, 364, 131163.

97. Putkonen, M.; Sajavaara, T.; Niinistö, L.; Keinonen, J. Analysis of ALD-processed thin films by ion-beam techniques. Anal. Bioanal. Chem. 2005, 382, 1791-9.

98. Emslie, D. J.; Chadha, P.; Price, J. S. Metal ALD and pulsed CVD: fundamental reactions and links with solution chemistry. Coord. Chem. Rev. 2013, 257, 3282-96.

99. Li, S.; Burel, L.; Aquino, C.; et al. Ultimate size control of encapsulated gold nanoparticles. Chem. Commun. 2013, 49, 8507-9.

100. Li, S.; Boucheron, T.; Tuel, A.; Farrusseng, D.; Meunier, F. Size-selective hydrogenation at the subnanometer scale over platinum nanoparticles encapsulated in silicalite-1 single crystal hollow shells. Chem. Commun. 2014, 50, 1824-6.

101. Pagis, C.; Morgado, P. A. R.; Farrusseng, D.; Bats, N.; Tuel, A. Hollow zeolite structures: an overview of synthesis methods. Chem. Mater. 2016, 28, 5205-23.

102. Dai, C.; Zhang, A.; Liu, M.; Guo, X.; Song, C. Hollow ZSM-5 with silicon-rich surface, double shells, and functionalized interior with metallic nanoparticles and carbon nanotubes. Adv. Funct. Mater. 2015, 25, 7479-87.

103. Chen, Y.; Zhu, X.; Wang, X.; Su, Y. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite. Chem. Eng. J. 2021, 419, 129641.

104. Kubota, S.; Sumi, T.; Kitamura, H.; Miyake, K.; Uchida, Y.; Nishiyama, N. Promoted propane dehydrogenation over Co confined within core–shell silicalite-1 zeolite crystals. Catal. Sci. Technol. 2024, 14, 1201-8.

105. Zhao, D.; Tian, X.; Doronkin, D. E.; et al. In situ formation of ZnOx species for efficient propane dehydrogenation. Nature 2021, 599, 234-8.

106. Otto, T.; Zones, S. I.; Iglesia, E. Challenges and strategies in the encapsulation and stabilization of monodisperse Au clusters within zeolites. J. Catal. 2016, 339, 195-208.

107. Bai, L.; Zhou, Y.; Zhang, Y.; Liu, H.; Sheng, X.; Duan, Y. Effect of calcination atmosphere on the catalytic properties of PtSnNaMg/ZSM-5 for propane dehydrogenation. Catal. Commun. 2009, 10, 2013-7.

108. Jones, J.; Xiong, H.; DeLaRiva, A. T.; et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150-4.

109. Liu, L.; Lopez-Haro, M.; Lopes, C. W.; et al. Atomic-level understanding on the evolution behavior of subnanometric Pt and Sn species during high-temperature treatments for generation of dense PtSn clusters in zeolites. J. Catal. 2020, 391, 11-24.

110. Gao, Y.; Peng, L.; Long, J.; Wu, Y.; Dai, Y.; Yang, Y. Hydrogen pre–reduction determined Co–silica interaction and performance of cobalt catalysts for propane dehydrogenation. Micropor. Mesopor. Mat. 2021, 323, 111187.

111. Ren, Z.; He, Y.; Yang, M.; et al. The investigation into the different Co species over Silicalite-1 via modulating heat-treatment atmosphere for propane dehydrogenation. Mol. Catal. 2022, 530, 112580.

112. Wu, B.; Shi, Y.; Zhang, J.; et al. Stabilizing ultra-small bimetallic PtSn clusters within S-1 crystals for effective propane dehydrogenation with low Pt loading. Chem. Eng. J. 2024, 498, 155205.

113. Hauser, A. W.; Horn, P. R.; Head-Gordon, M.; Bell, A. T. A systematic study on Pt based, subnanometer-sized alloy cluster catalysts for alkane dehydrogenation: effects of intermetallic interaction. Phys. Chem. Chem. Phys. 2016, 18, 10906-17.

114. Tait, S. L.; Dohnálek, Z.; Campbell, C. T.; Kay, B. D. n-alkanes on Pt(111) and on C(0001)Pt(111): chain length dependence of kinetic desorption parameters. J. Chem. Phys. 2006, 125, 234308.

115. Wei, X.; Cheng, J.; Li, Y.; et al. Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation. Nano. Res. 2023, 16, 10881-9.

116. He, Y.; Deng, H.; Zhang, Y.; et al. Boosting propane dehydrogenation over Sn stabilizing dispersed Ptδ+ confined in Silicalite-1 at low temperature. Fuel 2023, 352, 129044.

117. Razavian, M.; Fatemi, S.; Komasi, M. Seed-assisted OSDA-free synthesis of ZSM-5 zeolite and its application in dehydrogenation of propane. Mater. Res. Bull. 2015, 65, 253-9.

118. Razavian, M.; Fatemi, S. Synthesis and evaluation of seed-directed hierarchical ZSM-5 catalytic supports: inductive influence of various seeds and aluminosilicate gels on the physicochemical properties and catalytic dehydrogenative behavior. Mater. Chem. Phys. 2015, 165, 55-65.

119. Razavian, M.; Fatemi, S. Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process. Micropor. Mesopor. Mat. 2015, 201, 176-89.

120. Nawaz, Z.; Wei, F. Integrated bi-modal fluidized bed reactor for butane dehydrogenation to corresponding butylenes. Chem. Eng. J. 2014, 238, 249-53.

121. Nawaz, Z.; Qing, S.; Jixian, G.; Tang, X.; Wei, F. Effect of Si/Al ratio on performance of Pt–Sn-based catalyst supported on ZSM-5 zeolite for n-butane conversion to light olefins. J. Ind. Eng. Chem. 2010, 16, 57-62.

122. Zhang, Y.; Zhou, Y.; Shi, J.; et al. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation. J. Mol. Catal. A. Chem. 2014, 381, 138-47.

123. Wang, T.; Xu, Z.; Yue, Y.; Wang, T.; Lin, M.; Zhu, H. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation. Chin. J. Chem. Eng. 2022, 41, 384-91.

124. Lezcano-González, I.; Cong, P.; Campbell, E.; et al. Structure-activity relationships in highly active platinum-Tin MFI-type zeolite catalysts for propane dehydrogenation. ChemCatChem 2022, 14, e202101828.

125. Xu, Z.; Yue, Y.; Bao, X.; Xie, Z.; Zhu, H. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework. ACS. Catal. 2020, 10, 818-28.

126. Wang, Y.; Hu, Z.; Tian, W.; Gao, L.; Wang, Z.; Yuan, Z. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catal. Sci. Technol. 2019, 9, 6993-7002.

127. Ma, Y.; Chen, X.; Guan, Y.; et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology. J. Catal. 2021, 397, 44-57.

128. Li, B.; Xu, Z.; Chu, W.; Luo, S.; Jing, F. Ordered mesoporous Sn-SBA-15 as support for Pt catalyst with enhanced performance in propane dehydrogenation. Chin. J. Catal. 2017, 38, 726-35.

129. Zhang, Y.; Zhou, Y.; Huang, L.; Xue, M.; Zhang, S. Sn-modified ZSM-5 As support for platinum catalyst in propane dehydrogenation. Ind. Eng. Chem. Res. 2011, 50, 7896-902.

130. Zhang, Y.; Xue, M.; Zhou, Y.; et al. Propane dehydrogenation over Ce-containing ZSM-5 supported platinum–tin catalysts: Ce concentration effect and reaction performance analysis. RSC. Adv. 2016, 6, 29410-22.

131. Zhang, Y.; Zhou, Y.; Zhang, S.; et al. Catalytic structure and reaction performance of PtSnK/ZSM-5 catalyst for propane dehydrogenation: influence of impregnation strategy. J. Mater. Sci. 2015, 50, 6457-68.

132. Zhou, H.; Gong, J.; Xu, B.; Yu, L.; Fan, Y. PtSnNa@SUZ-4-catalyzed propane dehydrogenation. Appl. Catal. A. Gen. 2016, 527, 30-5.

133. Zhou, H.; Gong, J.; Xu, B.; et al. PtSnNa/SUZ-4: an efficient catalyst for propane dehydrogenation. Chin. J. Catal. 2017, 38, 529-36.

134. Wang, P.; Yang, M.; Liao, H.; et al. Restructured zeolites anchoring singly dispersed bimetallic platinum and zinc catalysts for propane dehydrogenation. Cell. Rep. Phys. Sci. 2023, 4, 101311.

135. Han, S. W.; Park, H.; Han, J.; et al. PtZn intermetallic compound nanoparticles in mesoporous zeolite exhibiting high catalyst durability for propane dehydrogenation. ACS. Catal. 2021, 11, 9233-41.

136. Zhang, L.; Ma, Y.; Liu, C.; et al. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation. Chin. J. Catal. 2023, 55, 241-52.

137. Zhang, B.; Li, G.; Liu, S.; et al. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier. ACS. Catal. 2022, 12, 1310-4.

138. Zhang, Y.; Zhou, Y.; Huang, L.; et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation. Chem. Eng. J. 2015, 270, 352-61.

139. Chen, C.; Sun, M.; Hu, Z.; Ren, J.; Zhang, S.; Yuan, Z. New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catal. Sci. Technol. 2019, 9, 1979-88.

140. Qu, Z.; Zhang, T.; Yin, X.; Zhang, J.; Xiong, X.; Sun, Q. Zeolite-encaged ultrasmall Pt-Zn species with trace amount of Pt for efficient propane dehydrogenation. Chem. Res. Chin. Univ. 2023, 39, 870-6.

141. Zhu, X.; Wang, X.; Su, Y. Propane dehydrogenation over PtZn localized at Ti sites on TS-1 zeolite. Catal. Sci. Technol. 2021, 11, 4482-90.

142. Xie, L.; Chai, Y.; Sun, L.; et al. Optimizing zeolite stabilized Pt-Zn catalysts for propane dehydrogenation. J. Energy. Chem. 2021, 57, 92-8.

143. Bian, K.; Zhang, G.; Wang, M.; et al. Promoting propane dehydrogenation over PtFe bimetallic catalysts by optimizing the state of Fe species. Chem. Eng. Sci. 2023, 275, 118748.

144. Cai, W.; Mu, R.; Zha, S.; et al. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. Sci. Adv. 2018, 4, eaar5418.

145. Miao, C.; Liu, M.; Tan, S.; et al. Pt–Sn nanoalloys on Sn-Beta zeolite for efficient propane dehydrogenation. Micropor. Mesopor. Mat. 2023, 361, 112736.

146. Zhou, S.; Liu, S.; Jing, F.; et al. Effects of dopants in PtSn/M-Silicalite-1 on structural property and on catalytic propane dehydrogenation performance. ChemistrySelect 2020, 5, 4175-85.

147. Qiu, Y.; Li, X.; Zhang, Y.; et al. Various metals (Ce, In, La, and Fe) promoted Pt/Sn-SBA-15 as highly stable catalysts for propane dehydrogenation. Ind. Eng. Chem. Res. 2019, 58, 10804-18.

148. Wang, Y.; Suo, Y.; Lv, X.; Wang, Z.; Yuan, Z. Y. Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation. J. Colloid. Interface. Sci. 2021, 593, 304-14.

149. Zhang, B.; Zheng, L.; Zhai, Z.; Li, G.; Liu, G. Subsurface-regulated PtGa nanoparticles confined in Silicalite-1 for propane dehydrogenation. ACS. Appl. Mater. Interfaces. 2021, 13, 16259-66.

150. Luo, L.; Zhou, T.; Li, W.; et al. Close intimacy between PtIn clusters and zeolite channels for ultrastability toward propane dehydrogenation. Nano. Lett. , 2024, 7236-43.

151. Zhou, J.; Liu, H.; Xiong, C.; et al. Potassium-promoted Pt–In bimetallic clusters encapsulated in silicalite-1 zeolite for efficient propane dehydrogenation. Chem. Eng. J. 2023, 455, 139794.

152. Li, S.; Li, Q.; Li, B.; et al. Efficient dehydrogenation of propane to propene over PtIn nanoclusters encapsulated in hollow-structured Silicalite-1. ACS. Catal. 2024, 14, 17825-36.

153. Zhou, J.; Zhang, Y.; Liu, H.; et al. Enhanced performance for propane dehydrogenation through Pt clusters alloying with copper in zeolite. Nano. Res. 2023, 16, 6537-43.

154. Zhang, X.; He, N.; Liu, C.; Guo, H. Pt–Cu alloy nanoparticles encapsulated in Silicalite-1 molecular sieve: coke-resistant catalyst for alkane dehydrogenation. Catal. Lett. 2019, 149, 974-84.

155. Zhou, J.; Sun, Q.; Qin, Y.; et al. Bimetallic CoCu-modified Pt species in S-1 zeolite with enhanced stability for propane dehydrogenation. J. Colloid. Interface. Sci. 2024, 663, 94-102.

156. Zhu, X.; Chen, B.; Wang, X. High active and stable structure of PtBi0.5K4/Si-Beta catalyzing propane dehydrogenation. Chem. Eng. J. 2023, 474, 145894.

157. Liu, M.; Sun, X.; Zhang, Y.; et al. Highly dispersed and stable NiSn subnanoclusters encapsulated within Silicalite-1 zeolite for efficient propane dehydrogenation. Fuel 2024, 357, 130069.

158. Qi, L.; Babucci, M.; Zhang, Y.; et al. Propane dehydrogenation catalyzed by isolated Pt atoms in ≡SiOZn-OH nests in dealuminated zeolite beta. J. Am. Chem. Soc. 2021, 143, 21364-78.

159. Qi, L.; Zhang, Y.; Babucci, M.; et al. Dehydrogenation of propane and n-butane catalyzed by isolated PtZn4 sites supported on self-pillared zeolite pentasil nanosheets. ACS. Catal. 2022, 12, 11177-89.

160. Ma, Y.; Song, S.; Liu, C.; et al. Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation. Nat. Catal. 2023, 6, 506-18.

161. Zhang, L.; Chen, X.; Ma, Y.; et al. Single Pt coordinated with framework Fe in MWW-type ferrisilicate toward efficient propane dehydrogenation. ACS. Catal. 2024, 14, 9431-9.

162. Liu, H.; Zhou, J.; Chen, T.; et al. Isolated Pt species anchored by hierarchical-like heteroatomic Fe-Silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit. ACS. Catal. 2023, 13, 2928-36.

163. Zhang, Y.; Wang, X.; Deng, H.; et al. Synergistic mechanism of isolated Fe3+ and highly dispersed Ptδ+ over zeolite for boosting propane dehydrogenation. AIChE. J. 2023, 69, e18249.

164. Zhang, H.; Zhong, L.; Bin Samsudin, I.; et al. Mg-stabilized subnanometer Rh particles in zeolite Beta as highly efficient catalysts for selective hydrogenation. J. Catal. 2022, 405, 489-98.

165. Wang, H.; Zhang, X.; Su, Z.; Chen, T. Amorphous CeOx islands on dealuminated zeolite beta to stabilize Pt nanoparticles as efficient and antisintering catalysts for propane dehydrogenation. Langmuir 2023, 39, 18366-79.

166. Zhu, C.; Li, W.; Chen, T.; et al. Boosting the stability of subnanometer Pt catalysts by the presence of framework indium(III) sites in zeolite. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409784.

167. Liao, H.; Tao, X.; Wu, L.; Tang, Y.; Wang, P.; Tan, L. Anchoring Pt sites via chemical confining functional ZnOx islands in propane dehydrogenation. Fuel 2024, 369, 131730.

168. Lefton, N. G.; Bell, A. T. Effects of structure on the activity, selectivity, and stability of Pt-Sn-DeAlBEA for propane dehydrogenation. ACS. Catal. 2024, 14, 3986-4000.

169. Liu, H.; Zhou, Y.; Zhang, Y.; Bai, L.; Tang, M. Effect of preparation processes on catalytic performance of PtSnNa/ZSM-5 for propane dehydrogenation. Ind. Eng. Chem. Res. 2009, 48, 5598-603.

170. Grasselli, R. K.; Stern, D. L.; Tsikoyiannis, J. G. Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC). Appl. Catal. A. Gen. 1999, 189, 1-8.

171. Ghashghaee, M.; Karimzadeh, R. Applicability of protolytic mechanism to steady-state heterogeneous dehydrogenation of ethane revisited. Micropor. Mesopor. Mat. 2013, 170, 318-30.

172. Wang, Z.; Zhang, B.; Liu, G.; Zhang, X. Thermal stable Pt clusters anchored by K/TiO2–Al2O3 for efficient cycloalkane dehydrogenation. Chin. J. Chem. Eng. 2024, 72, 187-98.

173. Yang, G.; Yan, X.; Chen, Y.; Guo, X.; Lang, W.; Guo, Y. Improved propylene selectivity and superior catalytic performance of Ga-xMg/ZSM-5 catalysts for propane dehydrogenation (PDH) reaction. Appl. Catal. A. Gen. 2022, 643, 118778.

174. Zhao, D.; Guo, K.; Han, S.; et al. Controlling reaction-induced loss of active sites in ZnOx/Silicalite-1 for durable nonoxidative propane dehydrogenation. ACS. Catal. 2022, 12, 4608-17.

175. Song, S.; Yang, K.; Zhang, P.; et al. Silicalite-1 stabilizes Zn-hydride species for efficient propane dehydrogenation. ACS. Catal. 2022, 12, 5997-6006.

176. Chen, C.; Hu, Z.; Ren, J.; Zhang, S.; Wang, Z.; Yuan, Z. ZnO nanoclusters supported on dealuminated zeolite β as a novel catalyst for direct dehydrogenation of propane to propylene. ChemCatChem 2019, 11, 868-77.

177. Chen, C.; Zhang, S.; Wang, Z.; Yuan, Z. Ultrasmall Co confined in the silanols of dealuminated beta zeolite: a highly active and selective catalyst for direct dehydrogenation of propane to propylene. J. Catal. 2020, 383, 77-87.

178. Yang, F.; Zhang, J.; Chen, J.; et al. Boosting propane dehydrogenation of defective S-1 stabilized single-atom Pt and ZnO catalysts via coordination environment regulation. Nano. Res. 2024, 17, 5884-96.

179. Kerstens, D.; Smeyers, B.; Van Waeyenberg, J.; Zhang, Q.; Yu, J.; Sels, B. F. State of the art and perspectives of hierarchical zeolites: practical overview of synthesis methods and use in catalysis. Adv. Mater. 2020, 32, e2004690.

180. Rodaum, C.; Chaipornchalerm, P.; Nunthakitgoson, W.; et al. Highly efficient propane dehydrogenation promoted by reverse water–gas shift reaction on Pt-Zn alloy surfaces. Fuel 2022, 325, 124833.

181. Zhou, S.; Zhou, Y.; Zhang, Y.; Sheng, X.; Zhang, Z. The synthesis of new coke-resistant support and its application in propane dehydrogenation to propene. J. Chem. Technol. Biotechnol. 2016, 91, 1072-81.

182. Feliczak-guzik, A. Hierarchical zeolites: synthesis and catalytic properties. Micropor. Mesopor. Mat. 2018, 259, 33-45.

183. Gounder, R.; Iglesia, E. Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites. J. Am. Chem. Soc. 2009, 131, 1958-71.

184. Bulánek, R.; Novoveská, K. Oxidative dehydrogenation of propane over pentasil ring Co-zeolites. Pol. J. Chem. 2004, 78, 149-58. https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ1-0023-0153. (accessed 13 Jun 2025)

185. Yuan, Y.; Huang, E.; Hwang, S.; Liu, P.; Chen, J. G. Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation. Nat. Commun. 2024, 15, 6529.

186. Gong, T.; Qin, L.; Lu, J.; Feng, H. ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion. Phys. Chem. Chem. Phys. 2016, 18, 601-14.

187. Choi, S.; Kim, W.; So, J.; et al. Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity. J. Catal. 2017, 345, 113-23.

188. Nakai, M.; Miyake, K.; Inoue, R.; et al. Dehydrogenation of propane over high silica *BEA type gallosilicate (Ga-Beta). Catal. Sci. Technol. 2019, 9, 6234-9.

189. Schreiber, M. W.; Plaisance, C. P.; Baumgärtl, M.; et al. Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes. J. Am. Chem. Soc. 2018, 140, 4849-59.

190. Siddiqi, G.; Sun, P.; Galvita, V.; Bell, A. T. Catalyst performance of novel Pt/Mg(Ga)(Al)O catalysts for alkane dehydrogenation. J. Catal. 2010, 274, 200-6.

191. Li, Q.; Sui, Z.; Zhou, X.; Zhu, Y.; Zhou, J.; Chen, D. Coke formation on Pt–Sn/Al2O3 catalyst in propane dehydrogenation: coke characterization and kinetic study. Top. Catal. 2011, 54, 888-96.

192. Yang, M.; Zhu, J.; Zhu, Y.; et al. Tuning selectivity and stability in propane dehydrogenation by shaping Pt particles: a combined experimental and DFT study. J. Mol. Catal. A. Chem. 2014, 395, 329-36.

193. Wang, L.; Wang, L.; Meng, X.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, e1901905.

194. Wang, N.; Zhang, L.; Guan, Y.; Wu, P.; Xu, H. Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chin. J. Struct. Chem. 2024, 43, 100248.

195. Wan, H.; Gong, N.; Liu, L. Solid catalysts for the dehydrogenation of long-chain alkanes: lessons from the dehydrogenation of light alkanes and homogeneous molecular catalysis. Sci. China. Chem. 2022, 65, 2163-76.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/