REFERENCES

1. Han, Q.; Gao, P.; Chen, K.; et al. Synergistic interplay of dual active sites on spinel ZnAl2O4 for syngas conversion. Chem 2023, 9, 721-38.

2. Lyu, S.; Wang, Y.; Qian, J.; et al. Role of residual CO molecules in OX–ZEO relay catalysis for syngas direct conversion. ACS. Catal. 2021, 11, 4278-87.

3. Wang, S.; Wang, P.; Shi, D.; et al. Direct conversion of syngas into light olefins with low CO2 emission. ACS. Catal. 2020, 10, 2046-59.

4. Torres Galvis, H. M.; de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: a review. ACS. Catal. 2013, 3, 2130-49.

5. Ren, L.; Zhang, J.; Wang, B.; et al. Syngas to light olefins over ZnAlOx and high-silica CHA prepared by boron-assisted hydrothermal synthesis. Fuel 2022, 307, 121916.

6. Torres Galvis, H. M.; Bitter, J. H.; Khare, C. B.; Ruitenbeek, M.; Dugulan, A. I.; de Jong, K. P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 2012, 335, 835-8.

7. Zhong, L.; Yu, F.; An, Y.; et al. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 2016, 538, 84-7.

8. Sun, Q.; Wang, N.; Yu, J. Advances in catalytic applications of zeolite-supported metal catalysts. Adv. Mater. 2021, 33, e2104442.

9. Song, F.; Yong, X.; Wu, X.; et al. FeMn@HZSM-5 capsule catalyst for light olefins direct synthesis via Fischer-Tropsch synthesis: Studies on depressing the CO2 formation. Appl. Catal. B. Environ. 2022, 300, 120713.

10. Qiu, T.; Wang, L.; Lv, S.; et al. SAPO-34 zeolite encapsulated Fe3C nanoparticles as highly selective Fischer-Tropsch catalysts for the production of light olefins. Fuel 2017, 203, 811-6.

11. Ni, Y.; Liu, Y.; Chen, Z.; et al. Realizing and recognizing syngas-to-olefins reaction via a dual-bed catalyst. ACS. Catal. 2019, 9, 1026-32.

12. Jiao, F.; Li, J.; Pan, X.; et al. Selective conversion of syngas to light olefins. Science 2016, 351, 1065-8.

13. Cheng, K.; Gu, B.; Liu, X.; Kang, J.; Zhang, Q.; Wang, Y. Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon–carbon coupling. Angew. Chem. Int. Ed. Engl. 2016, 55, 4725-8.

14. Wang, C.; Wang, Y.; Xie, Z. Methylation of olefins with ketene in zeotypes and its implications for the direct conversion of syngas to light olefins: a periodic DFT study. Catal. Sci. Technol. 2016, 6, 6644-9.

15. Pan, X.; Jiao, F.; Miao, D.; Bao, X. Oxide-zeolite-based composite catalyst concept that enables syngas chemistry beyond Fischer-Tropsch synthesis. Chem. Rev. 2021, 121, 6588-609.

16. Chen, K.; Wang, F.; Wang, Y.; et al. Relay catalysis for highly selective conversion of methanol to ethylene in syngas. JACS. Au. 2023, 3, 2894-904.

17. Zhu, Y.; Pan, X.; Jiao, F.; et al. Role of manganese oxide in syngas conversion to light olefins. ACS. Catal. 2017, 7, 2800-4.

18. Liu, X.; Zhou, W.; Yang, Y.; et al. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates. Chem. Sci. 2018, 9, 4708-18.

19. Su, J.; Zhou, H.; Liu, S.; et al. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrOx/AlPO-18 bifunctional catalysts. Nat. Commun. 2019, 10, 1297.

20. Li, G.; Jiao, F.; Pan, X.; et al. Role of SAPO-18 acidity in direct syngas conversion to light olefins. ACS. Catal. 2020, 10, 12370-5.

21. Su, J.; Zhang, L.; Zhou, H.; et al. Unveiling the anti-trap effect for bridging intermediates on ZnAlOx/AlPO-18 bifunctional catalysts to boost syngas to olefin conversion. ACS. Catal. 2023, 13, 2472-81.

22. Wang, M.; Kang, J.; Xiong, X.; et al. Effect of zeolite topology on the hydrocarbon distribution over bifunctional ZnAlO/SAPO catalysts in syngas conversion. Catal. Today. 2021, 371, 85-92.

23. Jiao, F.; Pan, X.; Gong, K.; Chen, Y.; Li, G.; Bao, X. Shape-selective zeolites promote ethylene formation from syngas via a ketene intermediate. Angew. Chem. Int. Ed. Engl. 2018, 57, 4692-6.

24. Jiao, F.; Bai, B.; Li, G.; et al. Disentangling the activity-selectivity trade-off in catalytic conversion of syngas to light olefins. Science 2023, 380, 727-30.

25. Tuo, J.; Fan, Y.; Wang, Y.; et al. Promoting syngas to olefins with isolated internal silanols-enriched Al-IDM-1 aluminosilicate nanosheets. Angew. Chem. Int. Ed. Engl. 2023, 62, e202313785.

26. Tuo, J.; Wang, J.; Gong, X.; et al. Ferrierite nanosheets with preferential Al locations as catalysts for carbonylation of dimethyl ether. Fuel 2024, 357, 130001.

27. Dai, W.; Ruaux, V.; Deng, X.; et al. Synthesis and catalytic application of nanorod-like FER-type zeolites. J. Mater. Chem. A. 2021, 9, 24922-31.

28. Yang, B.; Jiang, J.; Xu, H.; Liu, Y.; Peng, H.; Wu, P. Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Appl. Catal. A. Gen. 2013, 455, 107-13.

29. Tuo, J.; Lv, J.; Fan, S.; et al. One-pot synthesis of [Mn,H]ZSM-5 and the role of Mn in methanol-to-propylene reaction. Fuel 2022, 308, 121995.

30. Tuo, J.; Fan, S.; Yang, N.; et al. Direct synthesis of [B,H]ZSM-5 by a solid-phase method: AlF siting and catalytic performance in the MTP reaction. Catal. Sci. Technol. 2020, 10, 7034-45.

31. Liu, R.; Zeng, S.; Sun, T.; et al. Selective removal of acid sites in mordenite zeolite by trimethylchlorosilane silylation to improve dimethyl ether carbonylation stability. ACS. Catal. 2022, 12, 4491-500.

32. Gong, Y.; Tuo, J.; Li, S.; et al. Direct synthesis of IDM-1 aluminosilicate nanosheets with improved MTP performance. Chem. Commun. 2023, 59, 724-7.

33. Li, S.; Peng, R.; Wan, Z.; et al. A nanostrips-assemble morphology of ZSM-5 zeolite for efficient propylene production from methanol conversion. ACS. Sustain. Chem. Eng. 2023, 11, 10274-83.

34. Ding, Y.; Jiao, F.; Pan, X.; et al. Effects of proximity-dependent metal migration on bifunctional composites catalyzed syngas to olefins. ACS. Catal. 2021, 11, 9729-37.

35. Xie, M.; Fang, X.; Liu, H.; et al. Cyclic oxygenate-based deactivation mechanism in dimethyl ether carbonylation reaction over a pyridine-modified H-MOR catalyst. ACS. Catal. 2023, 13, 14327-33.

36. Xiong, Z.; Zhan, E.; Li, M.; Shen, W. DME carbonylation over a HSUZ-4 zeolite. Chem. Commun. 2020, 56, 3401-4.

37. Ma, K.; Zhao, S.; Dou, M.; Ma, X.; Dai, C. Enhancing the stability of methanol-to-olefins reaction catalyzed by SAPO-34 zeolite in the presence of CO2 and oxygen-vacancy-rich ZnCeZrOx. ACS. Catal. 2024, 14, 594-607.

38. Liu, J.; Xue, H.; Huang, X.; et al. Stability enhancement of H-mordenite in dimethyl ether carbonylation to methyl acetate by pre-adsorption of pyridine. Chin. J. Catal. 2010, 31, 729-38.

39. Zhou, H.; Zhu, W.; Shi, L.; et al. In situ DRIFT study of dimethyl ether carbonylation to methyl acetate on H-mordenite. J. Mol. Catal. A. Chem. 2016, 417, 1-9.

40. Cheung, P.; Bhan, A.; Sunley, G.; Law, D.; Iglesia, E. Site requirements and elementary steps in dimethyl ether carbonylation catalyzed by acidic zeolites. J. Catal. 2007, 245, 110-23.

41. Plessow, P. N.; Studt, F. Unraveling the mechanism of the initiation reaction of the methanol to olefins process using ab initio and DFT calculations. ACS. Catal. 2017, 7, 7987-94.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/