REFERENCES
1. Malko, D.; Neiss, C.; Viñes, F.; Görling, A. Competition for graphene: graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 2012, 108, 086804.
2. Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; et al. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS. Nano. 2013, 7, 8972-80.
3. Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760-4.
4. Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: a review of graphene. Chem. Rev. 2010, 110, 132-45.
5. Cao, N.; Zhang, N.; Wang, K.; Yan, K.; Xie, P. High-throughput screening of B/N-doped graphene supported single-atom catalysts for nitrogen reduction reaction. Chem. Synth. 2023, 3, 23.
6. Yi, C.; Liu, Z. Co single atoms/nanoparticles over carbon nanotubes for synergistic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Chem. Synth. 2024, 4, 67.
7. Wassei, J. K.; Kaner, R. B. Oh, the places you’ll go with graphene. Acc. Chem. Res. 2013, 46, 2244-53.
9. Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S. Synthesis of graphene and its applications: a review. Crit. Rev. Solid. State. Mater. Sci. 2010, 35, 52-71.
10. Fang, Y.; Xue, Y.; Li, Y.; et al. Graphdiyne interface engineering: highly active and selective ammonia synthesis. Angew. Chem. Int. Ed. Engl. 2020, 59, 13021-7.
11. Wang, F.; Zuo, Z.; Li, L.; et al. Large-area aminated-graphdiyne thin films for direct methanol fuel cells. Angew. Chem. 2019, 131, 15152-7.
12. Li, Y.; Xu, L.; Liu, H.; Li, Y. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572-86.
13. Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhu, D. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256-8.
14. Zhao, J.; Chen, Z.; Zhao, J. Metal-free graphdiyne doped with sp-hybridized boron and nitrogen atoms at acetylenic sites for high-efficiency electroreduction of CO2 to CH4 and C2H4. J. Mater. Chem. A. 2019, 7, 4026-35.
15. Li, J.; Zhong, L.; Tong, L.; et al. Atomic Pd on graphdiyne/graphene heterostructure as efficient catalyst for aromatic nitroreduction. Adv. Funct. Mater. 2019, 29, 1905423.
16. Xue, Y.; Huang, B.; Yi, Y.; et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.
17. Hui, L.; Xue, Y.; Yu, H.; et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst. J. Am. Chem. Soc. 2019, 141, 10677-83.
18. Gao, Y.; Cai, Z.; Wu, X.; Lv, Z.; Wu, P.; Cai, C. Graphdiyne-supported single-atom-sized Fe catalysts for the oxygen reduction reaction: DFT predictions and experimental validations. ACS. Catal. 2018, 8, 10364-74.
19. He, J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C.; Sun, L. Z. Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+U calculations. J. Phys. Chem. C. 2012, 116, 26313-21.
20. Pan, C.; Wang, C.; Zhao, X.; et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942-51.
21. Dong, Y.; Zhao, Y.; Chen, Y.; et al. Graphdiyne-hybridized N-doped TiO2 nanosheets for enhanced visible light photocatalytic activity. J. Mater. Sci. 2018, 53, 8921-32.
22. Zuo, Z.; Li, Y. Emerging electrochemical energy applications of graphdiyne. Joule 2019, 3, 899-903.
23. Yang, Z.; Shen, X.; Wang, N.; et al. Graphdiyne containing atomically precise N atoms for efficient anchoring of lithium ion. ACS. Appl. Mater. Interfaces. 2019, 11, 2608-17.
24. Pan, C.; He, Q.; Li, C. Promising graphdiyne-based nanomaterials for environmental pollutant control. Sci. China. Mater. 2024, 67, 3456-67.
25. Xue, Y.; Li, Y.; Zhang, J.; Liu, Z.; Zhao, Y. 2D graphdiyne materials: challenges and opportunities in energy field. Sci. China. Chem. 2018, 61, 765-86.
26. Gao, X.; Liu, H.; Wang, D.; Zhang, J. Graphdiyne: synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908-36.
27. Huang, C.; Li, Y.; Wang, N.; et al. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 2018, 118, 7744-803.
28. Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure-property predictions for new planar forms of carbon: layered phases containing sp 2 and sp atoms. J. Chem. Phys. 1987, 87, 6687-99.
29. Haley, M. M.; Brand, S. C.; Pak, J. J. Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. Engl. 1997, 36, 836-8.
30. Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; et al. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145-52.
31. Li, C.; Lu, X.; Han, Y.; et al. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano. Res. 2018, 11, 1714-21.
32. Zheng, Q.; Luo, G.; Liu, Q.; et al. Structural and electronic properties of bilayer and trilayer graphdiyne. Nanoscale 2012, 4, 3990-6.
33. Yue, Q.; Chang, S.; Kang, J.; Qin, S.; Li, J. Mechanical and electronic properties of graphyne and its family under elastic strain: theoretical predictions. J. Phys. Chem. C. 2013, 117, 14804-11.
34. Luo, G.; Qian, X.; Liu, H.; et al. Quasiparticle energies and excitonic effects of the two-dimensional carbon allotrope graphdiyne: theory and experiment. Phys. Rev. B. 2011, 84, 075439.
35. Samaniego, E.; Anitescu, C.; Goswami, S.; et al. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Comput. Methods. Appl. Mech. Eng. 2020, 362, 112790.
36. Mortazavi, B.; Javvaji, B.; Shojaei, F.; Rabczuk, T.; Shapeev, A. V.; Zhuang, X. Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles. Nano. Energy. 2021, 82, 105716.
37. Shang, H.; Zuo, Z.; Li, Y. Highly lithiophilic graphdiyne nanofilm on 3D free-standing Cu nanowires for high-energy-density electrodes. ACS. Appl. Mater. Interfaces. 2019, 11, 17678-85.
38. Pan, C.; Zhang, B.; Pan, T.; et al. Insights into efficient bacterial inactivation over nano Ag/graphdiyne: dual activation of molecular oxygen and water molecules. Environ. Sci. Nano. 2023, 10, 3072-83.
39. Hui, L.; Jia, D.; Yu, H.; Xue, Y.; Li, Y. Ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets toward efficient water splitting. ACS. Appl. Mater. Interfaces. 2019, 11, 2618-25.
40. Zhou, Q.; Dong, H.; Liu, L.; et al. In-situ surface growth strategy to synthesize MXene@graphdiyne heterostructure for achieving high capacity and desirable stability in lithium-ion batteries. J. Power. Sources. 2024, 603, 234404.
41. Fu, X.; He, F.; Gao, J.; et al. Directly growing graphdiyne nanoarray cathode to integrate an intelligent solid Mg-moisture battery. J. Am. Chem. Soc. 2023, 145, 2759-64.
42. Li, G.; Li, Y.; Qian, X.; et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C. 2011, 115, 2611-5.
43. Qian, X.; Liu, H.; Huang, C.; et al. Self-catalyzed growth of large-area nanofilms of two-dimensional carbon. Sci. Rep. 2015, 5, 7756.
44. Gao, X.; Li, J.; Du, R.; et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.
45. Li, W.; Liu, J.; Yu, Y.; et al. Synthesis of large-area ultrathin graphdiyne films at an air-water interface and their application in memristors. Mater. Chem. Front. 2020, 4, 1268-73.
46. Zhang, L.; Li, J.; Yi, W.; Wei, G.; Yin, M.; Xi, G. Synthesis of graphdiyne hollow spheres and multiwalled nanotubes and applications in water purification and Raman sensing. Nano. Lett. 2023, 23, 3023-9.
47. Gao, X.; Zhu, Y.; Yi, D.; et al. Ultrathin graphdiyne film on graphene through solution-phase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.
48. Zhou, J.; Xie, Z.; Liu, R.; et al. Synthesis of ultrathin graphdiyne film using a surface template. ACS. Appl. Mater. Interfaces. 2019, 11, 2632-7.
49. Kong, Y.; Li, X.; Wang, L.; et al. Rapid synthesis of graphdiyne films on hydrogel at the superspreading interface for antibacteria. ACS. Nano. 2022, 16, 11338-45.
50. Li, J.; Cao, H.; Wang, Q.; et al. Space-confined synthesis of monolayer graphdiyne in MXene interlayer. Adv. Mater. 2024, 36, e2308429.
51. Liu, R.; Gao, X.; Zhou, J.; et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv. Mater. 2017, 29, e2308429.
52. Zhang, Y. Q.; Kepčija, N.; Kleinschrodt, M.; et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 2012, 3, 1286.
53. Gao, H.; Franke, J.; Wagner, H.; et al. Effect of metal surfaces in on-surface glaser coupling. J. Phys. Chem. C. 2013, 117, 18595-602.
54. Cirera, B.; Zhang, Y. Q.; Björk, J.; et al. Synthesis of extended graphdiyne wires by vicinal surface templating. Nano. Lett. 2014, 14, 1891-7.
55. Sun, Q.; Cai, L.; Ma, H.; Yuan, C.; Xu, W. Dehalogenative homocoupling of terminal alkynyl bromides on Au(111): incorporation of acetylenic scaffolding into surface nanostructures. ACS. Nano. 2016, 10, 7023-30.
56. Zuo, Z.; Shang, H.; Chen, Y.; et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 2017, 53, 8074-7.
57. Kan, X.; Ban, Y.; Wu, C.; et al. Interfacial synthesis of conjugated two-dimensional N-graphdiyne. ACS. Appl. Mater. Interfaces. 2018, 10, 53-8.
58. Zhang, S.; Du, H.; He, J.; et al. Nitrogen-doped graphdiyne applied for lithium-ion storage. ACS. Appl. Mater. Interfaces. 2016, 8, 8467-73.
59. He, J.; Wang, N.; Yang, Z.; et al. Fluoride graphdiyne as a free-standing electrode displaying ultra-stable and extraordinary high Li storage performance. Energy. Environ. Sci. 2018, 11, 2893-903.
60. Wang, N.; Li, X.; Tu, Z.; et al. Synthesis and electronic structure of boron-graphdiyne with an sp-hybridized carbon skeleton and its application in sodium storage. Angew. Chem. 2018, 130, 4032-7.
61. Wang, N.; He, J.; Tu, Z.; et al. Synthesis of chlorine-substituted graphdiyne and applications for lithium-ion storage. Angew. Chem. 2017, 129, 10880-5.
62. Zhao, Y.; Yang, N.; Yao, H.; et al. Stereodefined codoping of sp-N and S atoms in few-layer graphdiyne for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 7240-4.
63. Shen, X.; Li, X.; Zhao, F.; et al. Preparation and structure study of phosphorus-doped porous graphdiyne and its efficient lithium storage application. 2D. Mater. 2019, 6, 035020.
64. Ren, X.; Li, X.; Yang, Z.; et al. Tailoring acetylenic bonds in graphdiyne for advanced lithium storage. ACS. Sustainable. Chem. Eng. 2020, 8, 2614-21.
65. He, J.; Wang, N.; Cui, Z.; et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 2017, 8, 1172.
66. Qi, L.; Gao, Y.; Gao, Y.; et al. Controlled growth of metal atom arrays on graphdiyne for seawater oxidation. J. Am. Chem. Soc. 2024, 146, 5669-77.
67. Zheng, X.; Wu, H.; Gao, Y.; Chen, S.; Xue, Y.; Li, Y. Controllable assembly of highly oxidized cobalt on graphdiyne surface for efficient conversion of nitrogen into nitric acid. Angew. Chem. Int. Ed. Engl. 2024, 63, e202316723.





