1. Miao, L.; Jia, W.; Cao, X.; Jiao, L. Computational chemistry for water-splitting electrocatalysis. Chem. Soc. Rev. 2024, 53, 2771-807.
2. Wei, S.; Sacchi, R.; Tukker, A.; Suh, S.; Steubing, B. Future environmental impacts of global hydrogen production. Energy. Environ. Sci. 2024, 17, 2157-72.
3. Zhao, L.; Wang, S.; Liang, S.; An, Q.; Fu, J.; Hu, J. Coordination anchoring synthesis of high-density single-metal-atom sites for electrocatalysis. Coord. Chem. Rev. 2022, 466, 214603.
4. Nakaya, Y.; Furukawa, S. Catalysis of alloys: classification, principles, and design for a variety of materials and reactions. Chem. Rev. 2023, 123, 5859-947.
5. Liu, L.; Corma, A. Bimetallic sites for catalysis: from binuclear metal sites to bimetallic nanoclusters and nanoparticles. Chem. Rev. 2023, 123, 4855-933.
6. Yun, Q.; Lu, Q.; Li, C.; et al. Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face-centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation. ACS. Nano. 2019, 13, 14329-36.
7. Zhang, Z.; Liu, G.; Cui, X.; et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.
8. Zhu, J.; Elnabawy, A. O.; Lyu, Z.; et al. Facet-controlled Pt–Ir nanocrystals with substantially enhanced activity and durability towards oxygen reduction. Mater. Today. 2020, 35, 69-77.
9. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-12.
10. Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044-88.
11. Mao, J.; Yin, J.; Pei, J.; Wang, D.; Li, Y. Single atom alloy: an emerging atomic site material for catalytic applications. Nano. Today. 2020, 34, 100917.
12. Zhang, T.; Walsh, A. G.; Yu, J.; Zhang, P. Single-atom alloy catalysts: structural analysis, electronic properties and catalytic activities. Chem. Soc. Rev. 2021, 50, 569-88.
13. Sun, X.; Song, Y.; Jiang, G.; Lan, X.; Xu, C. Fundamentals and catalytic applications of single-atom alloys. Sci. China. Mater. 2024, 67, 1-17.
14. Pei, G.; Liu, X.; Chai, M.; Wang, A.; Zhang, T. Isolation of Pd atoms by Cu for semi-hydrogenation of acetylene: effects of Cu loading. Chin. J. Catal. 2017, 38, 1540-8.
15. Pei, G. X.; Liu, X. Y.; Yang, X.; et al. Performance of Cu-alloyed Pd single-atom catalyst for semihydrogenation of acetylene under simulated front-end conditions. ACS. Catal. 2017, 7, 1491-500.
16. Pei, G. X.; Liu, X. Y.; Wang, A.; et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS. Catal. 2015, 5, 3717-25.
17. Pei, G. X.; Liu, X. Y.; Wang, A.; et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New. J. Chem. 2014, 38, 2043.
18. Shen, T.; Wang, S.; Zhao, T.; Hu, Y.; Wang, D. Recent advances of single-atom-alloy for energy electrocatalysis. Adv. Energy. Mater. 2022, 12, 2201823.
19. Da, Y.; Jiang, R.; Tian, Z.; Han, X.; Chen, W.; Hu, W. The applications of single-atom alloys in electrocatalysis: progress and challenges. SmartMat 2023, 4, e1136.
20. Zhuang, J.; Wang, D. Recent advances of single-atom alloy catalyst: properties, synthetic methods and electrocatalytic applications. Mater. Today. Catal. 2023, 2, 100009.
21. Gao, Q.; Han, X.; Liu, Y.; Zhu, H. Electrifying energy and chemical transformations with single-atom alloy nanoparticle catalysts. ACS. Catal. 2024, 14, 6045-61.
22. Ahmed, M.; Wang, C.; Zhao, Y.; et al. Bridging together theoretical and experimental perspectives in single-atom alloys for electrochemical ammonia production. Small 2024, 20, 2308084.
23. Gao, Q.; Yao, B.; Pillai, H. S.; et al. Synthesis of core/shell nanocrystals with ordered intermetallic single-atom alloy layers for nitrate electroreduction to ammonia. Nat. Synth. 2023, 2, 624-34.
24. Cao, Y.; Chen, S.; Bo, S.; et al. Single atom Bi decorated copper alloy enables C-C coupling for electrocatalytic reduction of CO2 into C2+ products. Angew. Chem. Int. Ed. Engl. 2023, 62, 202303048.
25. Wang, J.; Xin, S.; Xiao, Y.; et al. Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2022, 61, 202202518.
26. Wang, H.; Zhang, K. H. L.; Hofmann, J. P.; de la Peña O’shea, V. A.; Oropeza, F. E. The electronic structure of transition metal oxides for oxygen evolution reaction. J. Mater. Chem. A. 2021, 9, 19465-88.
27. Hansen, J. N.; Prats, H.; Toudahl, K. K.; et al. Is there anything better than Pt for HER? ACS. Energy. Lett. 2021, 6, 1175-80.
28. Zhu, J.; Hu, L.; Zhao, P.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851-918.
29. Zhang, Z.; Yates, J. T. Jr. Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem. Rev. 2012, 112, 5520-51.
30. Ding, C.; Shi, J.; Wang, Z.; Li, C. Photoelectrocatalytic water splitting: significance of cocatalysts, electrolyte, and interfaces. ACS. Catal. 2017, 7, 675-88.
31. Yao, Y.; Hu, S.; Chen, W.; et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304-13.
32. Mao, J.; He, C. T.; Pei, J.; et al. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat. Commun. 2018, 9, 4958.
33. Greiner, M. T.; Jones, T. E.; Beeg, S.; et al. Free-atom-like d states in single-atom alloy catalysts. Nat. Chem. 2018, 10, 1008-15.
34. Lee, J.; Kumar, A.; Yang, T.; et al. Stabilizing the OOH* intermediate via pre-adsorbed surface oxygen of a single Ru atom-bimetallic alloy for ultralow overpotential oxygen generation. Energy. Environ. Sci. 2020, 13, 5152-64.
35. Li, M.; Duanmu, K.; Wan, C.; et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495-503.
36. Zhu, Y.; Zhu, X.; Bu, L.; et al. Single-atom in-doped subnanometer Pt nanowires for simultaneous hydrogen generation and biomass upgrading. Adv. Funct. Mater. 2020, 30, 2004310.
37. Zeng, L.; Zhao, Z.; Huang, Q.; et al. Single-atom Cr-N4 sites with high oxophilicity interfaced with Pt atomic clusters for practical alkaline hydrogen evolution catalysis. J. Am. Chem. Soc. 2023, 145, 21432-41.
38. Ding, J.; Ji, Y.; Li, Y.; Hong, G. Monoatomic platinum-embedded hexagonal close-packed nickel anisotropic superstructures as highly efficient hydrogen evolution catalyst. Nano. Lett. 2021, 21, 9381-7.
39. Huo, L.; Jin, C.; Tang, J.; et al. Ultrathin NiPt single-atom alloy for synergistically accelerating alkaline hydrogen evolution. ACS. Appl. Energy. Mater. 2022, 5, 15136-45.
40. Luo, M.; Cai, J.; Zou, J.; Jiang, Z.; Wang, G.; Kang, X. Promoted alkaline hydrogen evolution by an N-doped Pt–Ru single atom alloy. J. Mater. Chem. A. 2021, 9, 14941-7.
41. Zhang, L.; Liu, H.; Liu, S.; et al. Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS. Catal. 2019, 9, 9350-8.
42. Chen, C.; Wu, D.; Li, Z.; et al. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy. Mater. 2019, 9, 1803913.
43. Tong, Y.; Liu, J.; Wang, L.; et al. Carbon-shielded single-atom alloy material family for multi-functional electrocatalysis. Adv. Funct. Mater. 2022, 32, 2205654.
44. Wang, B.; Li, J.; Li, D.; et al. Single atom iridium decorated nickel alloys supported on segregated MoO2 for alkaline water electrolysis. Adv. Mater. 2024, 36, e2305437.
45. Zhou, C.; Zhao, J. Y.; Liu, P. F.; et al. Towards the object-oriented design of active hydrogen evolution catalysts on single-atom alloys. Chem. Sci. 2021, 12, 10634-42.
46. Yang, S.; Si, Z.; Li, G.; et al. Single cobalt atoms immobilized on palladium-based nanosheets as 2D single-atom alloy for efficient hydrogen evolution reaction. Small 2023, 19, e2207651.
47. Jin, R.; Li, G.; Sharma, S.; Li, Y.; Du, X. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567-648.
48. Walsh, A. G.; Zhang, P. Thiolate-protected single-atom alloy nanoclusters: correlation between electronic properties and catalytic activities. Adv. Mater. Inter. 2021, 8, 2001342.
49. Kumar, B.; Kawawaki, T.; Shimizu, N.; et al. Gold nanoclusters as electrocatalysts: size, ligands, heteroatom doping, and charge dependences. Nanoscale 2020, 12, 9969-79.
50. Kwak, K.; Choi, W.; Tang, Q.; et al. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.
51. Kwak, K.; Choi, W.; Tang, Q.; Jiang, D.; Lee, D. Rationally designed metal nanocluster for electrocatalytic hydrogen production from water. J. Mater. Chem. A. 2018, 6, 19495-501.
52. Li, X.; Takano, S.; Tsukuda, T. Ligand effects on the hydrogen evolution reaction catalyzed by Au13 and Pt@Au12: alkynyl vs thiolate. J. Phys. Chem. C. 2021, 125, 23226-30.
53. Hu, G.; Tang, Q.; Lee, D.; Wu, Z.; Jiang, D. Metallic hydrogen in atomically precise gold nanoclusters. Chem. Mater. 2017, 29, 4840-7.
54. Choi, W.; Hu, G.; Kwak, K.; et al. Effects of metal-doping on hydrogen evolution reaction catalyzed by MAu24 and M2Au36 nanoclusters (M = Pt, Pd). ACS. Appl. Mater. Interfaces. 2018, 10, 44645-53.
55. Jo, Y.; Choi, M.; Kim, M.; Yoo, J. S.; Choi, W.; Lee, D. Promotion of alkaline hydrogen production via Ni-doping of atomically precise Ag nanoclusters. Bulletin. Korean. Chem. Soc. 2021, 42, 1672-7.
56. Ding, H.; Liu, H.; Chu, W.; Wu, C.; Xie, Y. Structural transformation of heterogeneous materials for electrocatalytic oxygen evolution reaction. Chem. Rev. 2021, 121, 13174-212.
57. Luo, X.; Wei, X.; Zhong, H.; et al. Single-atom Ir-anchored 3D amorphous NiFe nanowire@nanosheets for boosted oxygen evolution reaction. ACS. Appl. Mater. Interfaces. 2020, 12, 3539-46.
58. Babu, D. D.; Huang, Y.; Anandhababu, G.; et al. Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. J. Mater. Chem. A. 2019, 7, 8376-83.
59. Mu, X.; Yu, M.; Liu, X.; et al. High-entropy ultrathin amorphous metal–organic framework-stabilized Ru(Mo) dual-atom sites for water oxidation. ACS. Energy. Lett. 2024, 9, 5763-70.
60. Su, L.; Wang, P.; Wang, J.; et al. Pt–Cu interaction induced construction of single Pt sites for synchronous electron capture and transfer in photocatalysis. Adv. Funct. Mater. 2021, 31, 2104343.
61. Pan, Y.; Qian, Y.; Zheng, X.; et al. Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. Natl. Sci. Rev. 2021, 8, nwaa224.
62. Du, X. L.; Wang, X. L.; Li, Y. H.; et al. Isolation of single Pt atoms in a silver cluster: forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402-5.
63. Zhang, Y.; Chen, D.; Meng, W.; Li, S.; Meng, S. Plasmon-induced water splitting on Ag-alloyed Pt single-atom catalysts. Front. Chem. 2021, 9, 742794.
64. Kurashige, W.; Hayashi, R.; Wakamatsu, K.; et al. Atomic-level understanding of the effect of heteroatom doping of the cocatalyst on water-splitting activity in AuPd or AuPt alloy cluster-loaded BaLa4Ti4O15. ACS. Appl. Energy. Mater. 2019, 2, 4175-87.
65. Liu, Y.; Long, D.; Springer, A.; et al. Correlating heteroatoms doping, electronic structures, and photocatalytic activities of single-atom-doped Ag25(SR)18 nanoclusters. Solar. RRL. 2023, 7, 2201057.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.