REFERENCES
1. He, W.; Zhang, J.; Dieckhöfer, S.; et al. Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nat. Commun. 2022, 13, 1129.
2. Ithisuphalap, K.; Zhang, H.; Guo, L.; Yang, Q.; Yang, H.; Wu, G. Photocatalysis and photoelectrocatalysis methods of nitrogen reduction for sustainable ammonia synthesis. Small. Methods. 2019, 3, 1800352.
3. Wu, T.; Fan, W.; Zhang, Y.; Zhang, F. Electrochemical synthesis of ammonia: progress and challenges. Mater. Today. Phys. 2021, 16, 100310.
4. Liu, H. Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin. J. Catal. 2014, 35, 1619-40.
5. Wang, K.; Smith, D.; Zheng, Y. Electron-driven heterogeneous catalytic synthesis of ammonia: current states and perspective. Carbon. Resour. Convers. 2018, 1, 2-31.
6. Kyriakou, V.; Garagounis, I.; Vourros, A.; Vasileiou, E.; Stoukides, M. An electrochemical haber-bosch process. Joule 2020, 4, 142-58.
7. Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Electrocatalytic reduction of nitrogen: from Haber-Bosch to ammonia artificial leaf. Chem 2019, 5, 263-83.
8. Qing, G.; Ghazfar, R.; Jackowski, S. T.; et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437-516.
9. Fu, X.; Pedersen, J. B.; Zhou, Y.; et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023, 379, 707-12.
10. Li, S.; Zhou, Y.; Fu, X.; et al. Long-term continuous ammonia electrosynthesis. Nature 2024, 629, 92-7.
11. Mcenaney, J. M.; Singh, A. R.; Schwalbe, J. A.; et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy. Environ. Sci. 2017, 10, 1621-30.
12. Xu, X.; Pan, Y.; Zhong, Y.; Ran, R.; Shao, Z. Ruddlesden–Popper perovskites in electrocatalysis. Mater. Horiz. 2020, 7, 2519-65.
13. Han, Q.; Jiao, H.; Xiong, L.; Tang, J. Progress and challenges in photocatalytic ammonia synthesis. Mater. Adv. 2021, 2, 564-81.
14. Gorbanev, Y.; Vervloessem, E.; Nikiforov, A.; Bogaerts, A. Nitrogen fixation with water vapor by nonequilibrium plasma: toward sustainable ammonia production. ACS. Sustain. Chem. Eng. 2020, 8, 2996-3004.
15. Conrads, H.; Schmidt, M. Plasma generation and plasma sources. Plasma. Sources. Sci. Technol. 2000, 9, 441-54.
16. Sharma, R. K.; Patel, H.; Mushtaq, U.; et al. Plasma activated electrochemical ammonia synthesis from nitrogen and water. ACS. Energy. Lett. 2021, 6, 313-9.
17. Wang, Y.; Craven, M.; Yu, X.; et al. Plasma-enhanced catalytic synthesis of ammonia over a Ni/Al2O3 catalyst at near-room temperature: insights into the importance of the catalyst surface on the reaction mechanism. ACS. Catal. 2019, 9, 10780-93.
18. Gharahshiran V, Zheng Y. Sustainable ammonia synthesis: an in-depth review of non-thermal plasma technologies. J. Energy. Chem. 2024, 96, 1-38.
19. Abe, R. Giant cluster expansion theory and its application to high temperature plasma. Prog. Theor. Phys. 1959, 22, 213-26.
20. Yuji, T.; Fujii, S.; Mungkung, N.; Akatsuka, H. Optical emission characteristics of atmospheric-pressure nonequilibrium microwave discharge and high-frequency DC pulse discharge plasma jets. IEEE. Trans. Plasma. Sci. 2009, 37, 839-45.
21. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Park, J.; Selwyn, G. S.; Hicks, R. F. The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE. Trans. Plasma. Sci. 1998, 26, 1685-94.
22. Trenchev, G.; Nikiforov, A.; Wang, W.; Kolev, S.; Bogaerts, A. Atmospheric pressure glow discharge for CO2 conversion: model-based exploration of the optimum reactor configuration. Chem. Eng. J. 2019, 362, 830-41.
23. Gallon, H. J.; Tu, X.; Twigg, M. V.; Whitehead, J. C. Plasma-assisted methane reduction of a NiO catalyst - low temperature activation of methane and formation of carbon nanofibres. Appl. Catal. B. Environ. 2011, 106, 616-20.
24. Kan, H.; Wang, T.; Yang, Z.; et al. High frequency discharge plasma induced plasticizer elimination in water: removal performance and residual toxicity. J. Hazard. Mater. 2020, 383, 121185.
25. Arora, N.; Sharma, N. Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam. Relat. Mater. 2014, 50, 135-50.
26. Mutaf-Yardimci, O.; Saveliev, A. V.; Fridman, A. A.; Kennedy, L. A. Thermal and nonthermal regimes of gliding arc discharge in air flow. J. Appl. Phys. 2000, 87, 1632-41.
27. Li, S.; Medrano, J.; Hessel, V.; Gallucci, F. Recent progress of plasma-assisted nitrogen fixation research: a review. Processes 2018, 6, 248.
28. Liu, J.; Li, X.; Liu, J.; Zhu, A. Understanding arc behaviors and achieving the optimal mode in a magnetically-driven gliding arc plasma. Plasma. Sources. Sci. Technol. 2020, 29, 015022.
29. Sun, J.; Zhou, R.; Hong, J.; et al. Sustainable ammonia production via nanosecond-pulsed plasma oxidation and electrocatalytic reduction. Appl. Catal. B. Environ. 2024, 342, 123426.
30. Glarborg, P.; Miller, J. A.; Kee, R. J. Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Combust. Flame. 1986, 65, 177-202.
31. Zeldovich, J. Acta physicochim. URSS.1946, 21, 577. https://cir.nii.ac.jp/crid/1572543023999418112. (accessed 22 Oct 2025)
32. Rouwenhorst, K. H. R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R. S.; Bogaerts, A.; Lefferts, L. Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. Green. Chem. 2020, 22, 6258-87.
33. Eyde, S. Oxidation of atmospheric nitrogen and development of resulting industries in Norway. J. Ind. Eng. Chem. 1912, 4, 771-4.
34. Patil, B. S.; Peeters, F. J. J.; van Rooij, G. J.; et al. Plasma assisted nitrogen oxide production from air: using pulsed powered gliding arc reactor for a containerized plant. AIChE. J. 2018, 64, 526-37.
35. Bian, W.; Shi, J.; Yin, X. Nitrogen fixation into water by pulsed high-voltage discharge. IEEE. Trans. Plasma. Sci. 2009, 37, 211-8.
36. Wang, W.; Patil, B.; Heijkers, S.; Hessel, V.; Bogaerts, A. Nitrogen fixation by gliding arc plasma: better insight by chemical kinetics modelling. ChemSusChem 2017, 10, 2145-57.
37. van ‘t Veer, K.; Engelmann, Y.; Reniers, F.; Bogaerts, A. Plasma-catalytic ammonia synthesis in a DBD plasma: role of microdischarges and their afterglows. J. Phys. Chem. C. 2020, 124, 22871-83.
38. Subedi, D. P.; Joshi, U. M.; Wong, C. S. Dielectric barrier discharge (DBD) plasmas and their applications. In: Rawat RS, editor. Plasma science and technology for emerging economies. Singapore: Springer; 2017. pp. 693-737.
39. de Groot, M.; Koper, M. The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum. J. Electroanal. Chem. 2004, 562, 81-94.
40. Sicsic, D.; Balbaud-Célérier, F.; Tribollet, B. Mechanism of nitric acid reduction and kinetic modelling. Eur. J. Inorg. Chem. 2014, 2014, 6174-84.
41. Garcia-Segura, S.; Lanzarini-Lopes, M.; Hristovski, K.; Westerhoff, P. Electrocatalytic reduction of nitrate: fundamentals to full-scale water treatment applications. Appl. Catal. B. Environ. 2018, 236, 546-68.
42. Xu, H.; Ma, Y.; Chen, J.; Zhang, W. X.; Yang, J. Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle. Chem. Soc. Rev. 2022, 51, 2710-58.
43. Kong, X.; Ni, J.; Song, Z.; et al. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway. Nat. Sustain. 2024, 7, 652-60.
44. Anastasiadou, D.; van Beek, Y.; Hensen, E. J. M.; Costa Figueiredo, M. Ammonia electrocatalytic synthesis from nitrate. Electrochem. Sci. Adv. 2023, 3, e2100220.
45. Sun, J.; Alam, D.; Daiyan, R.; et al. A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy. Environ. Sci. 2021, 14, 865-72.
46. Liang, W. P.; Zhang, X. M.; Bai, P. W.; et al. Cascade N2 reduction process with DBD plasma oxidation and electrocatalytic reduction for continuous ammonia synthesis. Environ. Sci. Technol. 2023, 57, 14558-68.
47. Wu, A.; Yang, J.; Xu, B.; et al. Direct ammonia synthesis from the air via gliding arc plasma integrated with single atom electrocatalysis. Appl. Catal. B. Environ. 2021, 299, 120667.
48. Liu, W.; Xia, M.; Zhao, C.; et al. Efficient ammonia synthesis from the air using tandem non-thermal plasma and electrocatalysis at ambient conditions. Nat. Commun. 2024, 15, 3524.
49. Li, L.; Tang, C.; Cui, X.; et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction. Angew. Chem. Int. Ed. Engl. 2021, 60, 14131-7.
50. Zheng, J.; Zhang, H.; Lv, J.; et al. Enhanced NH3 synthesis from air in a plasma tandem-electrocatalysis system using plasma-engraved N-doped defective MoS2. JACS. Au. 2023, 3, 1328-36.
51. Liu, Y.; Ma, J.; Huang, S.; Niu, S.; Gao, S. Highly dispersed copper-iron nanoalloy enhanced electrocatalytic reduction coupled with plasma oxidation for ammonia synthesis from ubiquitous air and water. Nano. Energy. 2023, 117, 108840.
52. Ren, Y.; Yu, C.; Wang, L.; et al. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system. J. Am. Chem. Soc. 2022, 144, 10193-200.
53. Li, W.; Zhang, S.; Ding, J.; et al. Sustainable nitrogen fixation to produce ammonia by electroreduction of plasma-generated nitrite. ACS. Sustain. Chem. Eng. 2023, 11, 1168-77.
54. Guo, X.; Wang, Z.; Gao, Y.; et al. Highly stable perovskite oxides for electrocatalytic acidic NOx- reduction streamlining ammonia synthesis from air. Angew. Chem. Int. Ed. Engl. 2024, 63, e202410517.
55. Ding, J.; Li, W.; Zhang, H.; et al. A cascade jet plasma oxidation - electroreduction system using Pd-Ni dual-site catalyst for sustainable ammonia production from air. Adv. Funct. Mater. 2024, 34, 2410768.
56. Gao, R.; Dai, T. Y.; Meng, Z.; et al. A bifunctional catalyst for green ammonia synthesis from ubiquitous air and water. Adv. Mater. 2023, 35, e2303455.
57. Rouwenhorst, K. H. R.; Jardali, F.; Bogaerts, A.; Lefferts, L. From the Birkeland-Eyde process towards energy-efficient plasma-based NOX synthesis: a techno-economic analysis. Energy. Environ. Sci. 2021, 14, 2520-34.
58. Sun, J.; Zhang, T.; Hong, J.; et al. Insights into plasma-catalytic nitrogen fixation from catalyst microanalysis and chemical kinetics modelling. Chem. Eng. J. 2023, 469, 143841.
59. Patil, B.; Cherkasov, N.; Lang, J.; Ibhadon, A.; Hessel, V.; Wang, Q. Low temperature plasma-catalytic NOx synthesis in a packed DBD reactor: effect of support materials and supported active metal oxides. Appl. Catal. B. Environ. 2016, 194, 123-33.
60. Xu, R.; Du, L.; Adekoya, D.; et al. Well-defined nanostructures for electrochemical energy conversion and storage. Adv. Energy. Mater. 2021, 11, 2001537.
61. Shi, K.; Willis, M. D.; Ren, Z.; Feng, X. Efficient recycling of dilute nitrate to ammonia using Cu nanowire electrocatalyst. J. Phys. Chem. C. 2023, 127, 20710-7.
62. Song, J.; Qian, S.; Yang, W.; et al. Nano-single-atom heterointerface engineering for pH-universal electrochemical nitrate reduction to ammonia. Adv. Funct. Mater. 2024, 34, 2409089.
63. Ouyang, X.; Qiao, W.; Yang, Y.; et al. Intensifying interfacial reverse hydrogen spillover for boosted electrocatalytic nitrate reduction to ammonia. Angew. Chem. Int. Ed. Engl. 2025, 64, e202422585.
64. Fu, Y.; Wang, S.; Wang, Y.; et al. Enhancing electrochemical nitrate reduction to ammonia over Cu nanosheets via facet tandem catalysis. Angew. Chem. Int. Ed. Engl. 2023, 62, e202303327.
65. Lu, S.; Lin, G.; Yan, H.; et al. In situ facet transformation engineering over Co3O4 for highly efficient electroreduction of nitrate to ammonia. ACS. Catal. 2024, 14, 14887-94.
66. Wu, Z. Y.; Karamad, M.; Yong, X.; et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.
67. Zhang, S.; Wu, J.; Zheng, M.; et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.
68. Wang, J.; Ou, Z.; Dong, C.; et al. Electronic structure modulated by B-doped Cu promotes electrocatalytic nitrate reduction for ammonia production. ACS. Catal. 2025, 15, 156-66.
69. Ouyang, L.; Liang, J.; Luo, Y.; et al. Recent advances in electrocatalytic ammonia synthesis. Chin. J. Catal. 2023, 50, 6-44.
70. Zhang, J.; He, W.; Quast, T.; et al. Single-entity electrochemistry unveils dynamic transformation during tandem catalysis of Cu2O and Co3O4 for converting NO3- to NH3. Angew. Chem. Int. Ed. Engl. 2023, 62, e202214830.
71. Fan, Z.; Cao, C.; Yang, X.; et al. Interfacial electronic interactions promoted activation for nitrate electroreduction to ammonia over Ag-modified Co3O4. Angew. Chem. Int. Ed. Engl. 2024, 63, e202410356.
72. Ren, Z.; Shi, K.; Meng, Z.; Willis, M. D.; Feng, X. Complete single-pass conversion of dilute nitrate to ammonia using Cu/Co(OH)2 tandem electrocatalyst. ACS. Energy. Lett. 2024, 9, 3849-58.
73. Guo, Y.; Stroka, J. R.; Kandemir, B.; Dickerson, C. E.; Bren, K. L. Cobalt metallopeptide electrocatalyst for the selective reduction of nitrite to ammonium. J. Am. Chem. Soc. 2018, 140, 16888-92.
74. Lv, L.; Tan, H.; Liu, Y.; et al. Cu-Ru bicenter synergistically triggers tandem catalytic effect for electroreduction of nitrate to ammonium. Adv. Funct. Mater. 2025, 2423612.
75. Huang, Y.; He, C.; Cheng, C.; et al. Pulsed electroreduction of low-concentration nitrate to ammonia. Nat. Commun. 2023, 14, 7368.
76. Bu, Y.; Wang, C.; Zhang, W.; Yang, X.; Ding, J.; Gao, G. Electrical pulse-driven periodic self-repair of Cu-Ni tandem catalyst for efficient ammonia synthesis from nitrate. Angew. Chem. Int. Ed. Engl. 2023, 62, e202217337.
77. Yang, Q.; Bu, Y.; Pu, S.; et al. Matched kinetics process over Fe2O3-Co/NiO heterostructure enables highly efficient nitrate electroreduction to ammonia. Angew. Chem. Int. Ed. Engl. 2024, 63, e202400428.
78. Li, P.; Li, R.; Liu, Y.; Xie, M.; Jin, Z.; Yu, G. Pulsed nitrate-to-ammonia electroreduction facilitated by tandem catalysis of nitrite intermediates. J. Am. Chem. Soc. 2023, 145, 6471-9.
79. Wang, Y.; Zhou, W.; Jia, R.; Yu, Y.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem. Int. Ed. Engl. 2020, 59, 5350-4.





