REFERENCES
2. Yu, H.; Li, X.; Zheng, J. Beyond hydrogen storage: metal hydrides for catalysis. ACS. Catal. 2024, 14, 3139-57.
3. He, T.; Cao, H.; Chen, P. Complex hydrides for energy storage, conversion, and utilization. Adv. Mater. 2019, 31, e1902757.
4. Li, Z.; Huang, W. Hydride species on oxide catalysts. J. Phys. Condens. Matter. 2021, 33, 433001.
5. Xiong, M.; Gao, Z.; Qin, Y. Spillover in heterogeneous catalysis: new insights and opportunities. ACS. Catal. 2021, 11, 3159-72.
6. Copéret, C.; Estes, D. P.; Larmier, K.; Searles, K. Isolated surface hydrides: formation, structure, and reactivity. Chem. Rev. 2016, 116, 8463-505.
7. Tokmic, K.; Markus, C. R.; Zhu, L.; Fout, A. R. Well-defined cobalt(I) dihydrogen catalyst: experimental evidence for a Co(I)/Co(III) redox process in olefin hydrogenation. J. Am. Chem. Soc. 2016, 138, 11907-13.
8. Tokmic, K.; Fout, A. R. Alkyne semihydrogenation with a well-defined nonclassical Co-H2 catalyst: a H2 spin on isomerization and E-selectivity. J. Am. Chem. Soc. 2016, 138, 13700-5.
9. Teschner, D.; Borsodi, J.; Wootsch, A.; et al. The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation. Science 2008, 320, 86-9.
10. Ziebart, C.; Federsel, C.; Anbarasan, P.; et al. Well-defined iron catalyst for improved hydrogenation of carbon dioxide and bicarbonate. J. Am. Chem. Soc. 2012, 134, 20701-4.
11. Zhang, X.; Liu, G.; Meiwes-Broer, K. H.; Ganteför, G.; Bowen, K. CO2 activation and hydrogenation by PtHn- cluster anions. Angew. Chem. Int. Ed. Engl. 2016, 55, 9644-7.
12. Chen, H.; Ma, N.; Cheng, C.; et al. Hydrogen activation on aluminium-doped magnesium hydride surface for methanation of carbon dioxide. Appl. Surf. Sci. 2020, 515, 146038.
13. Wang, P.; Chang, F.; Gao, W.; et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 2017, 9, 64-70.
14. Kobayashi, Y.; Tang, Y.; Kageyama, T.; et al. Titanium-based hydrides as heterogeneous catalysts for ammonia synthesis. J. Am. Chem. Soc. 2017, 139, 18240-6.
15. Wang, Q.; Pan, J.; Guo, J.; et al. Ternary ruthenium complex hydrides for ammonia synthesis via the associative mechanism. Nat. Catal. 2021, 4, 959-67.
16. Spektor, K.; Crichton, W. A.; Filippov, S.; Simak, S. I.; Häussermann, U. Exploring the Mg-Cr-H system at high pressure and temperature via in situ synchrotron diffraction. Inorg. Chem. 2019, 58, 11043-50.
17. Soga, K.; Imamura, H.; Ikeda, S. Hydrogenation of ethylene over lanthanum-nickel (LaNi5) alloy. J. Phys. Chem. 1977, 81, 1762-6.
18. Soga, K. Hydrogenation of ethylene over some intermetallic compounds. J. Catal. 1979, 56, 119-26.
19. Barrault, J.; Guilleminot, A.; Percheron-Guegan, A.; Paul-Boncour, V.; Achard, J. Olefin hydrogenation over some LaNi5-xMx intermetallic systems. Appl. Catal. 1986, 22, 263-71.
20. Johnson, J. Behavior of hydrided and dehydrided LaNi5Hx as an hydrogenation catalyst. J. Catal. 1992, 137, 102-13.
21. Yu, H.; Yang, X.; Jiang, X.; et al. LaNi5.5 particles for reversible hydrogen storage in N-ethylcarbazole. Nano. Energy. 2021, 80, 105476.
22. Zhong, D.; Ouyang, L.; Liu, J.; Wang, H.; Jia, Y.; Zhu, M. Metallic Ni nanocatalyst in situ formed from LaNi5H5 toward efficient CO2 methanation. Int. J. Hydrogen. Energy. 2019, 44, 29068-74.
23. Yang, S.; Han, S.; Li, Y.; Yang, S.; Hu, L. Effect of substituting B for Ni on electrochemical kinetic properties of AB5-type hydrogen storage alloys for high-power nickel/metal hydride batteries. Mater. Sci. Eng. B. 2011, 176, 231-6.
24. Choi, H. S.; Park, C. R. Theoretical guidelines to designing high performance energy storage device based on hybridization of lithium-ion battery and supercapacitor. J. Power. Sources. 2014, 259, 1-14.
25. Kato, S.; Matam, S. K.; Kerger, P.; et al. The origin of the catalytic activity of a metal hydride in CO2 reduction. Angew. Chem. Int. Ed. Engl. 2016, 55, 6028-32.
26. Kato, S.; Borgschulte, A.; Ferri, D.; et al. CO2 hydrogenation on a metal hydride surface. Phys. Chem. Chem. Phys. 2012, 14, 5518-26.
27. Hou, Z.; Guo, S.; Zhang, X.; et al. Hydrogen storage and stability of rare earth-doped TiFe alloys under extensive cycling. Int. J. Hydrogen. Energy. 2025, 136, 469-76.
28. Iribarren, I.; Sánchez-Sanz, G.; Elguero, J.; Alkorta, I.; Trujillo, C. Reactivity of coinage metal hydrides for the production of H2 molecules. ChemistryOpen 2021, 10, 724-30.
29. Gao, W.; Guo, J.; Wang, P.; et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy. 2018, 3, 1067-75.
30. Gao, W.; Wang, P.; Guo, J.; et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt. ACS. Catal. 2017, 7, 3654-61.
31. Chang, F.; Guan, Y.; Chang, X.; et al. Alkali and alkaline earth hydrides-driven N2 activation and transformation over Mn nitride catalyst. J. Am. Chem. Soc. 2018, 140, 14799-806.
32. Hattori, M.; Mori, T.; Arai, T.; et al. Enhanced catalytic ammonia synthesis with transformed BaO. ACS. Catal. 2018, 8, 10977-84.
33. Chen, H.; Liu, P.; Li, J.; et al. MgH2/CuxO hydrogen storage composite with defect-rich surfaces for carbon dioxide hydrogenation. ACS. Appl. Mater. Interfaces. 2019, 11, 31009-17.
34. Chen, H.; Liu, P.; Liu, J.; Feng, X.; Zhou, S. Mechanochemical in-situ incorporation of Ni on MgO/MgH2 surface for the selective O-/C-terminal catalytic hydrogenation of CO2 to CH4. J. Catal. 2021, 394, 397-405.
35. Heiber, W.; Leutert, F. Äthylendiamin-substituierte Eisencarboyle und eine neue Bildungsweise von Eisencarbonylwasserstoff (XI. Mitteil. über Metallcarbonyle). Ber. dtsch. Chem. Ges. A/B. 1931, 64, 2832-9.
36. Babón, J. C.; Esteruelas, M. A.; López, A. M. Homogeneous catalysis with polyhydride complexes. Chem. Soc. Rev. 2022, 51, 9717-58.
37. Ortuño, M. A.; Vidossich, P.; Conejero, S.; Lledós, A. Orbital-like motion of hydride ligands around low-coordinate metal centers. Angew. Chem. Int. Ed. Engl. 2014, 53, 14158-61.
38. Morris, R. H. Estimating the acidity of transition metal hydride and dihydrogen complexes by adding ligand acidity constants. J. Am. Chem. Soc. 2014, 136, 1948-59.
39. Morris, R. H. Brønsted-Lowry acid strength of metal hydride and dihydrogen complexes. Chem. Rev. 2016, 116, 8588-654.
40. Zhu, Y.; Fan, Y.; Burgess, K. Carbene-metal hydrides can be much less acidic than phosphine-metal hydrides: significance in hydrogenations. J. Am. Chem. Soc. 2010, 132, 6249-53.
41. Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J.; Appel, A. M. Thermodynamic hydricity of transition metal hydrides. Chem. Rev. 2016, 116, 8655-92.
42. Sasson, Y.; Rempel, G. L. Homogeneous rearrangement of unsaturated carbinols to saturated ketones catalyzed by ruthenium complexes. Tetrahedron. Lett. 1974, 15, 4133-6.
43. Yadav, S.; Gupta, R. Base-free transfer hydrogenation catalyzed by ruthenium hydride complexes of coumarin-amide ligands. ACS. Sustain. Chem. Eng. 2023, 11, 8533-43.
44. Pandey, B.; Krause, J. A.; Guan, H. Cobalt-catalyzed additive-free dehydrogenation of neat formic acid. ACS. Catal. 2024, 14, 13781-91.
45. Liu, T.; Guo, M.; Orthaber, A.; et al. Accelerating proton-coupled electron transfer of metal hydrides in catalyst model reactions. Nat. Chem. 2018, 10, 881-7.
46. Roberts, J. A.; Appel, A. M.; DuBois, D. L.; Bullock, R. M. Comprehensive thermochemistry of W-H bonding in the metal hydrides CpW(CO)2(IMes)H, [CpW(CO)2(IMes)H]•+, and [CpW(CO)2(IMes)(H)2]+. Influence of an N-heterocyclic carbene ligand on metal hydride bond energies. J. Am. Chem. Soc. 2011, 133, 14604-13.
47. Esteruelas, M. A.; Lezáun, V.; Martínez, A.; Oliván, M.; Oñate, E. Osmium hydride acetylacetonate complexes and their application in acceptorless dehydrogenative coupling of alcohols and amines and for the dehydrogenation of cyclic amines. Organometallics 2017, 36, 2996-3004.
48. Buil, M. L.; Esteruelas, M. A.; Gay, M. P.; et al. Osmium catalysts for acceptorless and base-free dehydrogenation of alcohols and amines: unusual coordination modes of a BPI anion. Organometallics 2018, 37, 603-17.
49. Zeiher, E. H. K.; Dewit, D. G.; Caulton, K. G. Mechanistic features of carbon-hydrogen bond activation by the rhenium complex ReH7[P(C6H11)3]2. J. Am. Chem. Soc. 1984, 106, 7006-11.
50. Lapointe, S.; Pandey, D. K.; Gallagher, J. M.; et al. Cobalt complexes of bulky PNP ligand: H2 activation and catalytic two-electron reactivity in hydrogenation of alkenes and alkynes. Organometallics 2021, 40, 3617-26.
51. Borowski, A. F.; Sabo-Etienne, S.; Christ, M. L.; Donnadieu, B.; Chaudret, B. Versatile reactivity of the bis(dihydrogen) complex RuH2(H2)2(PCy3)2 toward functionalized olefins: olefin coordination versus hydrogen transfer via the stepwise dehydrogenation of the phosphine ligand. Organometallics 1996, 15, 1427-34.
52. Borowski, A. F.; Sabo-Etienne, S.; Chaudret, B. Homogeneous hydrogenation of arenes catalyzed by the bis(dihydrogen) complex [RuH2(H2)2(PCy3)2]. J. Mol. Catal. A. Chem. 2001, 174, 69-79.
53. Borowski, A. F.; Vendier, L.; Sabo-Etienne, S.; Rozycka-Sokolowska, E.; Gaudyn, A. V. Catalyzed hydrogenation of condensed three-ring arenes and their N-heteroaromatic analogues by a bis(dihydrogen) ruthenium complex. Dalton. Trans. 2012, 41, 14117-25.
54. Dobereiner, G. E.; Nova, A.; Schley, N. D.; et al. Iridium-catalyzed hydrogenation of N-heterocyclic compounds under mild conditions by an outer-sphere pathway. J. Am. Chem. Soc. 2011, 133, 7547-62.
55. Anker, M. D.; Hill, M. S.; Lowe, J. P.; Mahon, M. F. Alkaline-earth-promoted CO homologation and reductive catalysis. Angew. Chem. Int. Ed. Engl. 2015, 54, 10009-11.
56. Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Super-bulky penta-arylcyclopentadienyl ligands: isolation of the full range of half-sandwich heavy alkaline-earth metal hydrides. Angew. Chem. Int. Ed. Engl. 2019, 58, 4356-60.
57. Jin, R.; Li, G.; Sharma, S.; Li, Y.; Du, X. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567-648.
58. Zhao, S.; Jin, R.; Jin, R. Opportunities and challenges in CO2 reduction by gold- and silver-based electrocatalysts: from bulk metals to nanoparticles and atomically precise nanoclusters. ACS. Energy. Lett. 2018, 3, 452-62.
59. Gross, E.; Somorjai, G. A. Mesoscale nanostructures as a bridge between homogeneous and heterogeneous catalysis. Top. Catal. 2014, 57, 812-21.
60. Sun, C.; Teo, B. K.; Deng, C.; et al. Hydrido-coinage-metal clusters: rational design, synthetic protocols and structural characteristics. Coord. Chem. Rev. 2021, 427, 213576.
61. Chiu, T. H.; Liao, J. H.; Silalahi, R. P. B.; Pillay, M. N.; Liu, C. W. Hydride-doped coinage metal superatoms and their catalytic applications. Nanoscale. Horiz. 2024, 9, 675-92.
62. Sun, C.; Mammen, N.; Kaappa, S.; et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS. Nano. 2019, 13, 5975-86.
63. Liu, C. Y.; Liu, T. Y.; Guan, Z. J.; et al. Dramatic difference between Cu20H8 and Cu20H9 clusters in catalysis. CCS. Chem. 2024, 6, 1581-90.
64. Ni, Y. R.; Pillay, M. N.; Chiu, T. H.; et al. Controlled shell and kernel modifications of atomically precise Pd/Ag superatomic nanoclusters. Chemistry 2023, 29, e202300730.
65. Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Identification of the active species in bimetallic cluster catalyzed hydrogenation. J. Am. Chem. Soc. 2022, 144, 11405-12.
66. Liu, C. Y.; Yuan, S. F.; Wang, S.; Guan, Z. J.; Jiang, D. E.; Wang, Q. M. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat. Commun. 2022, 13, 2082.
67. Kulkarni, V. K.; Khiarak, B. N.; Takano, S.; et al. N-heterocyclic carbene-stabilized hydrido Au24 nanoclusters: synthesis, structure, and electrocatalytic reduction of CO2. J. Am. Chem. Soc. 2022, 144, 9000-6.
68. Gao, Z. H.; Wei, K.; Wu, T.; et al. A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2022, 144, 5258-62.
69. Tang, L.; Luo, Y.; Ma, X.; et al. Poly-hydride [AuI7(PPh3)7H5](SbF6)2 cluster complex: structure, transformation, and electrocatalytic CO2 reduction properties. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300553.
70. Brocha Silalahi, R. P.; Jo, Y.; Liao, J. H.; et al. Hydride-containing 2-electron Pd/Cu superatoms as catalysts for efficient electrochemical hydrogen evolution. Angew. Chem. Int. Ed. Engl. 2023, 62, e202301272.
71. Chen, H.; Gao, P.; Liu, Z.; et al. Direct detection of reactive gallium-hydride species on the Ga2O3 surface via solid-state NMR spectroscopy. J. Am. Chem. Soc. 2022, 144, 17365-75.
72. Wang, M.; Zheng, L.; Wang, G.; et al. Spinel nanostructures for the hydrogenation of CO2 to methanol and hydrocarbon chemicals. J. Am. Chem. Soc. 2024, 146, 14528-38.
73. Chen, L.; Cooper, A. C.; Pez, G. P.; Cheng, H. On the mechanisms of hydrogen spillover in MoO3. J. Phys. Chem. C. 2008, 112, 1755-8.
74. Xi, Y.; Zhang, Q.; Cheng, H. Mechanism of hydrogen spillover on WO3(001) and Formation of HxWO3 (x = 0.125, 0.25, 0.375, and
75. Khoobiar, S. Particle to particle migration of hydrogen atoms on platinum - alumina catalysts from particle to neighboring particles. J. Phys. Chem. 1964, 68, 411-2.
76. Benseradj, F.; Sadi, F.; Chater, M. Hydrogen spillover studies on diluted Rh/Al2O3 catalyst. Appl. Catal. A. Gen. 2002, 228, 135-44.
77. Antonucci, P. Hydrogen spillover effects in the hydrogenation of benzene over Ptγ-Al2O3 catalysts. J. Catal. 1982, 75, 140-50.
78. Kang, H.; Zhu, L.; Li, S.; et al. Generation of oxide surface patches promoting H-spillover in Ru/(TiOx)MnO catalysts enables CO2 reduction to CO. Nat. Catal. 2023, 6, 1062-72.
79. Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 2012, 335, 1209-12.





