REFERENCES
1. Shi, W.; Liu, C.; Lei, A. Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles. Chem. Soc. Rev. 2011, 40, 2761-76.
2. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322-63.
3. Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 2015, 115, 9587-652.
4. Yi, H.; Zhang, G.; Wang, H.; et al. Recent advances in radical C–H activation/radical cross-coupling. Chem. Rev. 2017, 117, 9016-85.
5. Korch, K. M.; Watson, D. A. Cross-coupling of heteroatomic electrophiles. Chem. Rev. 2019, 119, 8192-228.
6. He, J.; Wasa, M.; Chan, K. S. L.; Shao, Q.; Yu, J. Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 2017, 117, 8754-86.
7. Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 2018, 118, 2249-95.
8. Xia, Y.; Qiu, D.; Wang, J. Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chem. Rev. 2017, 117, 13810-89.
9. Takise, R.; Muto, K.; Yamaguchi, J. Cross-coupling of aromatic esters and amides. Chem. Soc. Rev. 2017, 46, 5864-88.
10. Xu, B.; Wang, Q.; Fang, C.; Zhang, Z. M.; Zhang, J. Recent advances in Pd-catalyzed asymmetric cyclization reactions. Chem. Soc. Rev. 2024, 53, 883-971.
11. Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Asymmetric transfer and pressure hydrogenation with earth-abundant transition metal catalysts. Chin. J. Chem. 2018, 36, 443-54.
12. Colonna, P.; Bezzenine, S.; Gil, R.; Hannedouche, J. Alkene hydroamination via earth‐abundant transition metal (iron, cobalt, copper and zinc) catalysis: a mechanistic overview. Adv. Synth. Catal. 2020, 362, 1550-63.
13. Cong, X.; Zeng, X. Mechanistic diversity of low-valent chromium catalysis: cross-coupling and hydrofunctionalization. Acc. Chem. Res. 2021, 54, 2014-26.
14. Feng, Y.; Long, S.; Tang, X.; et al. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem. Soc. Rev. 2021, 50, 6042-93.
15. Süsse, L.; Stoltz, B. M. Enantioselective formation of quaternary centers by allylic alkylation with first-row transition-metal catalysts. Chem. Rev. 2021, 121, 4084-99.
16. Cruz-navarro, J. A.; Sánchez-mora, A.; Serrano-garcía, J. S.; et al. Advances in cross-coupling reactions catalyzed by aromatic pincer complexes based on earth-abundant 3d metals (Mn, Fe, Co, Ni, Cu). Catalysts 2024, 14, 69.
17. Bansal, S.; Shabade, A. B.; Punji, B. Advances in C( sp2 )–H/C( sp2 )–H oxidative coupling of (hetero)arenes using 3d transition metal catalysts. Adv. Synth. Catal. 2021, 363, 1998-2022.
18. Narayanam, J. M.; Stephenson, C. R. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102-13.
19. Xuan, J.; Xiao, W. J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. Engl. 2012, 51, 6828-38.
21. Bellotti, P.; Huang, H. M.; Faber, T.; Glorius, F. Photocatalytic late-stage C–H functionalization. Chem. Rev. 2023, 123, 4237-352.
22. Juliá, F.; Constantin, T.; Leonori, D. Applications of halogen-atom transfer (XAT) for the generation of carbon radicals in synthetic photochemistry and photocatalysis. Chem. Rev. 2022, 122, 2292-352.
23. Ji, P.; Duan, K.; Li, M.; et al. Photochemical dearomative skeletal modifications of heteroaromatics. Chem. Soc. Rev. 2024, 53, 6600-24.
24. Zubkov, M. O.; Dilman, A. D. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem. Soc. Rev. 2024, 53, 4741-85.
25. Yu, X. Y.; Chen, J. R.; Xiao, W. J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis. Chem. Rev. 2021, 121, 506-61.
26. Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016, 116, 10035-74.
27. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; Macmillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.
28. Wang, P. Z.; Chen, J. R.; Xiao, W. J. Emerging trends in copper-promoted radical-involved C–O bond formations. J. Am. Chem. Soc. 2023, 145, 17527-50.
29. Huo, H.; Shen, X.; Wang, C.; et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 2014, 515, 100-3.
31. Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 2022, 122, 1543-625.
32. Song, L.; Cai, L.; Gong, L.; Van der Eycken, E. V. Photoinduced copper-catalyzed enantioselective coupling reactions. Chem. Soc. Rev. 2023, 52, 2358-76.
33. Zhang, J.; Rueping, M. Metallaphotoredox catalysis for sp3 C–H functionalizations through single-electron transfer. Nat. Catal. 2024, 7, 963-76.
34. Zhang, J.; Rueping, M. Metallaphotoredox catalysis for sp3 C–H functionalizations through hydrogen atom transfer (HAT). Chem. Soc. Rev. 2023, 52, 4099-120.
35. Saini, V.; Stokes, B. J.; Sigman, M. S. Transition-metal-catalyzed laboratory-scale carbon–carbon bond-forming reactions of ethylene. Angew. Chem. Int. Ed. Engl. 2013, 52, 11206-20.
36. McDonald, R. I.; Liu, G.; Stahl, S. S. Palladium(II)-catalyzed alkene functionalization via nucleopalladation: stereochemical pathways and enantioselective catalytic applications. Chem. Rev. 2011, 111, 2981-3019.
37. Dhungana, R. K.; Kc, S.; Basnet, P.; Giri, R. Transition metal-catalyzed dicarbofunctionalization of unactivated olefins. Chem. Rec. 2018, 18, 1314-40.
38. Yin, G.; Mu, X.; Liu, G. Palladium(II)-catalyzed oxidative difunctionalization of alkenes: bond forming at a high-valent palladium center. Acc. Chem. Res. 2016, 49, 2413-23.
39. Wickham, L. M.; Giri, R. Transition metal (Ni, Cu, Pd)-catalyzed alkene dicarbofunctionalization reactions. Acc. Chem. Res. 2021, 54, 3415-37.
40. Qi, X.; Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS. Catal. 2020, 10, 8542-56.
41. Peng, J. Recent advances in carbonylative difunctionalization of alkenes. Adv. Synth. Catal. 2020, 362, 3059-80.
43. Wang, P. Z.; Zhang, B.; Xiao, W. J.; Chen, J. R. Photocatalysis meets copper catalysis: a new opportunity for asymmetric multicomponent radical cross-coupling reactions. Acc. Chem. Res. 2024, 57, 3433-48.
44. Engl, S.; Reiser, O. Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities. Chem. Soc. Rev. 2022, 51, 5287-99.
45. Hossain, A.; Bhattacharyya, A.; Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 2019, 364, eaav9713.
46. Abderrazak, Y.; Bhattacharyya, A.; Reiser, O. Visible-light-induced homolysis of earth-abundant metal-substrate complexes: a complementary activation strategy in photoredox catalysis. Angew. Chem. Int. Ed. Engl. 2021, 60, 21100-15.
47. Juliá, F. Ligand-to-metal charge transfer (LMCT) photochemistry at 3d-metal complexes: an emerging tool for sustainable organic synthesis. ChemCatChem 2022, 14, e202200916.
48. Kochi, J. K. Photolyses of metal compounds: cupric chloride in organic media. J. Am. Chem. Soc. 1962, 84, 2121-7.
49. Lian, P.; Long, W.; Li, J.; Zheng, Y.; Wan, X. Visible-light-induced vicinal dichlorination of alkenes through LMCT excitation of CuCl2. Angew. Chem. Int. Ed. Engl. 2020, 59, 23603-8.
50. Fumagalli, G.; Rabet, P. T.; Boyd, S.; Greaney, M. F. Three-component azidation of styrene-type double bonds: light-switchable behavior of a copper photoredox catalyst. Angew. Chem. Int. Ed. Engl. 2015, 54, 11481-4.
51. Hossain, A.; Vidyasagar, A.; Eichinger, C.; et al. Visible-light-accelerated copper(II)-catalyzed regio- and chemoselective oxo-azidation of vinyl arenes. Angew. Chem. Int. Ed. Engl. 2018, 57, 8288-92.
52. He, X. X.; Chang, H. H.; Zhao, Y. X.; et al. CuCl2 -catalyzed α-chloroketonation of aromatic alkenes via visible-light-induced LMCT. Chem. Asian. J. 2023, 18, e202200954.
53. Guo, Q.; Wang, M.; Wang, Y.; Xu, Z.; Wang, R. Photoinduced, copper-catalyzed three components cyanofluoroalkylation of alkenes with fluoroalkyl iodides as fluoroalkylation reagents. Chem. Commun. 2017, 53, 12317-20.
54. He, J.; Chen, C.; Fu, G. C.; Peters, J. C. Visible-light-induced, copper-catalyzed three-component coupling of alkyl halides, olefins, and trifluoromethylthiolate to generate trifluoromethyl thioethers. ACS. Catal. 2018, 8, 11741-8.
55. Xiong, Y.; Ma, X.; Zhang, G. Copper-catalyzed intermolecular carboamination of alkenes induced by visible light. Org. Lett. 2019, 21, 1699-703.
56. Hu, Z.; Wang, Y.; Wang, K.; Wu, J.; Wu, F. Visible-light-induced copper-catalyzed intermolecular three-component difluoroalkyl thiocyanidation of alkenes. Org. Lett. 2023, 25, 4835-9.
57. Zhang, Y.; Zhang, D. Visible-light-induced copper-catalyzed alkynylation/alkylation of alkenes. J. Org. Chem. 2020, 85, 3213-23.
58. Zhang, Y.; Sun, Y.; Chen, B.; et al. Copper-catalyzed photoinduced enantioselective dual carbofunctionalization of alkenes. Org. Lett. 2020, 22, 1490-4.
59. Yu, X. Y.; Zhao, Q. Q.; Chen, J.; Chen, J. R.; Xiao, W. J. Copper-catalyzed radical cross-coupling of redox-active oxime esters, styrenes, and boronic acids. Angew. Chem. Int. Ed. Engl. 2018, 57, 15505-9.
60. Wang, P. Z.; Zhang, Z.; Jiang, M.; Chen, J. R.; Xiao, W. J. A general copper-box system for the asymmetric arylative functionalization of benzylic, propargylic or allenylic radicals. Angew. Chem. Int. Ed. Engl. 2024, 63, e202411469.
61. Chen, J.; He, B. Q.; Wang, P. Z.; et al. Photoinduced, copper-catalyzed radical cross-coupling of cycloketone oxime esters, alkenes, and terminal alkynes. Org. Lett. 2019, 21, 4359-64.
62. Lv, X. L.; Wang, C.; Wang, Q. L.; Shu, W. Rapid synthesis of γ-arylated carbonyls enabled by the merge of copper- and photocatalytic radical relay alkylarylation of alkenes. Org. Lett. 2019, 21, 56-9.
63. Lv, X.; Shu, W. Unified and practical access to ɤ-alkynylated carbonyl derivatives via streamlined assembly at room temperature. Commun. Chem. 2019, 2, 219.
64. Wang, P. Z.; Gao, Y.; Chen, J.; Huan, X. D.; Xiao, W. J.; Chen, J. R. Asymmetric three-component olefin dicarbofunctionalization enabled by photoredox and copper dual catalysis. Nat. Commun. 2021, 12, 1815.
65. Yan, D.; Xu, S.; Qian, H.; et al. Photoredox-catalyzed and copper(II) salt-assisted radical addition/hydroxylation reaction of alkenes, sulfur ylides, and water. ACS. Catal. 2022, 12, 3279-85.
67. Kharasch, M. S.; Urry, W. H.; Jensen, E. V. Addition of derivatives of chlorinated acetic acids to olefins. J. Am. Chem. Soc. 1945, 67, 1626.
68. Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Addition of carbon tetrabromide and bromoform to olefins. J. Am. Chem. Soc. 1946, 68, 154-5.
69. Wang, P.; Liang, Y.; Wu, X.; Guan, W.; Xiao, W.; Chen, J. Copper-catalyzed three-component photo-ATRA-type reaction for asymmetric intermolecular C–O coupling. ACS. Catal. 2022, 12, 10925-37.
70. Cai, Y.; Chatterjee, S.; Ritter, T. Photoinduced copper-catalyzed late-stage azidoarylation of alkenes via arylthianthrenium salts. J. Am. Chem. Soc. 2023, 145, 13542-8.
71. Zhang, B.; Li, T. T.; Mao, Z. C.; et al. Enantioselective cyanofunctionalization of aromatic alkenes via radical anions. J. Am. Chem. Soc. 2024, 146, 1410-22.
72. Wang, P. Z.; Wu, X.; Cheng, Y.; Jiang, M.; Xiao, W. J.; Chen, J. R. Photoinduced copper-catalyzed asymmetric three-component coupling of 1,3-dienes: an alternative to kharasch-sosnovsky reaction. Angew. Chem. Int. Ed. Engl. 2021, 60, 22956-62.
73. Li, G.; Meng, F.; Xiao, W.; Chen, J. Photoinduced copper-catalyzed asymmetric radical three-component cross-coupling of 1,3-enynes with oxime esters and carboxylic acids. Org. Chem. Front. 2023, 10, 2773-81.
74. Li, G. Q.; Li, Z. Q.; Jiang, M.; et al. Photoinduced copper-catalyzed asymmetric three-component radical 1,2-azidooxygenation of 1,3-dienes. Angew. Chem. Int. Ed. Engl. 2024, 63, e202405560.
75. Chen, J.; Liang, Y. J.; Wang, P. Z.; et al. Photoinduced copper-catalyzed asymmetric C–O cross-coupling. J. Am. Chem. Soc. 2021, 143, 13382-92.
76. Lu, F. D.; Lu, L. Q.; He, G. F.; Bai, J. C.; Xiao, W. J. Enantioselective radical carbocyanation of 1,3-dienes via photocatalytic generation of allylcopper complexes. J. Am. Chem. Soc. 2021, 143, 4168-73.
77. Wu, Y. L.; Jiang, M.; Rao, L.; Cheng, Y.; Xiao, W. J.; Chen, J. R. Selective three-component 1,2-aminoalkoxylation of 1-aryl-1,3-dienes by dual photoredox and copper catalysis. Org. Lett. 2022, 24, 7470-5.
78. Bi, M. H.; Cheng, Y.; Xiao, W. J.; Chen, J. R. Visible-light-induced photoredox-catalyzed selective 1,4-difluoroalkylesterification of 1-aryl-1,3-dienes. Org. Lett. 2022, 24, 7589-94.
79. Liu, Y.; Yan, H.; Chen, Y.; Hao, E.; Shi, L. Photoinduced copper-catalyzed selective three-component 1,2-amino oxygenation of 1,3-dienes. Chem. Commun. 2023, 59, 10388-91.
80. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS. Cent. Sci. 2017, 3, 692-700.
81. García-Domínguez, A.; Mondal, R.; Nevado, C. Dual photoredox/nickel-catalyzed three-component carbofunctionalization of alkenes. Angew. Chem. Int. Ed. Engl. 2019, 58, 12286-90.
82. Campbell, M. W.; Compton, J. S.; Kelly, C. B.; Molander, G. A. Three-component olefin dicarbofunctionalization enabled by nickel/photoredox dual catalysis. J. Am. Chem. Soc. 2019, 141, 20069-78.
83. Mega, R. S.; Duong, V. K.; Noble, A.; Aggarwal, V. K. Decarboxylative conjunctive cross‐coupling of vinyl boronic esters using metallaphotoredox catalysis. Angew. Chem. Int. Ed. Engl. 2020, 132, 4405-9.
84. Sun, S. Z.; Duan, Y.; Mega, R. S.; Somerville, R. J.; Martin, R. Site-selective 1,2-dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. Engl. 2020, 59, 4370-4.
85. Guo, L.; Tu, H. Y.; Zhu, S.; Chu, L. Selective, intermolecular alkylarylation of alkenes via photoredox/nickel dual catalysis. Org. Lett. 2019, 21, 4771-6.
86. Li, Y.; Li, W.; Gu, Z.; Chen, J.; Xia, J. Photoredox Ni-catalyzed branch-selective reductive coupling of aldehydes with 1,3-dienes. ACS. Catal. 2020, 10, 1528-34.
87. Huang, L.; Zhu, C.; Yi, L.; Yue, H.; Kancherla, R.; Rueping, M. Cascade cross-coupling of dienes: photoredox and nickel dual catalysis. Angew. Chem. Int. Ed. Engl. 2020, 59, 457-64.
88. Zhang, Z.; Hu, X. Arylsilylation of electron-deficient alkenes via cooperative photoredox and nickel catalysis. ACS. Catal. 2020, 10, 777-82.
89. Guo, L.; Yuan, M.; Zhang, Y.; et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. , 2020, 20390-9.
90. Zheng, S.; Chen, Z.; Hu, Y.; et al. Selective 1,2-aryl-aminoalkylation of alkenes enabled by metallaphotoredox catalysis. Angew. Chem. 2020, 132, 18066-72.
91. Xu, S.; Chen, H.; Zhou, Z.; Kong, W. Three-component alkene difunctionalization by direct and selective activation of aliphatic C–H bonds. Angew. Chem. Int. Ed. Engl. 2021, 60, 7405-11.
92. Campbell, M. W.; Yuan, M.; Polites, V. C.; Gutierrez, O.; Molander, G. A. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 2021, 143, 3901-10.
93. Jiang, H.; Yu, X.; Daniliuc, C. G.; Studer, A. Three-component aminoarylation of electron-rich alkenes by merging photoredox with nickel catalysis. Angew. Chem. Int. Ed. Engl. 2021, 60, 14399-404.
94. Qian, P.; Guan, H.; Wang, Y. E.; et al. Catalytic enantioselective reductive domino alkyl arylation of acrylates via nickel/photoredox catalysis. Nat. Commun. 2021, 12, 6613.
95. Xi, X.; Chen, Y.; Yuan, W. Nickel-catalyzed three-component alkylacylation of alkenes enabled by a photoactive electron donor-acceptor complex. Org. Lett. 2022, 24, 3938-43.
96. Dey, P.; Jana, S. K.; Rai, P.; Maji, B. Dicarbofunctionalizations of an unactivated alkene via photoredox/nickel dual catalysis. Org. Lett. 2022, 24, 6261-5.
97. Li, X.; Yuan, M.; Chen, F.; et al. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 2023, 9, 154-69.
98. Liu, M. S.; Shu, W. Rapid synthesis of β-chiral sulfones by ni-organophotocatalyzed enantioselective sulfonylalkenylation of alkenes. JACS. Au. 2023, 3, 1321-7.
99. Du, X.; Cheng-Sánchez, I.; Nevado, C. Dual nickel/photoredox-catalyzed asymmetric carbosulfonylation of alkenes. J. Am. Chem. Soc. 2023, 145, 12532-40.
100. Zhao, H.; Yuan, W. Three-component reductive conjugate addition/aldol tandem reaction enabled by nickel/photoredox dual catalysis. Chem. Sci. 2023, 14, 1485-90.
101. Ye, F.; Zheng, S.; Luo, Y.; Qi, X.; Yuan, W. Ligand-controlled regioreversed 1,2-aryl-aminoalkylation of alkenes enabled by photoredox/nickel catalysis. ACS. Catal. 2024, 14, 8505-17.
102. Koo, Y.; Hong, S. Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination. Chem. Sci. 2024, 15, 7707-13.
103. Cong, F.; Sun, G. Q.; Ye, S. H.; Hu, R.; Rao, W.; Koh, M. J. A bimolecular homolytic substitution-enabled platform for multicomponent cross-coupling of unactivated alkenes. J. Am. Chem. Soc. 2024, 146, 10274-80.
104. Wang, J. Z.; Mao, E.; Nguyen, J. A.; Lyon, W. L.; MacMillan, D. W. C. Triple radical sorting: aryl-alkylation of alkenes. J. Am. Chem. Soc. 2024, 146, 15693-700.
105. Hu, X.; Cheng-Sánchez, I.; Kong, W.; Molander, G. A.; Nevado, C. Nickel-catalysed enantioselective alkene dicarbofunctionalization enabled by photochemical aliphatic C–H bond activation. Nat. Catal. 2024, 7, 655-65.
106. Schwarz, J. L.; Huang, H.; Paulisch, T. O.; Glorius, F. Dialkylation of 1,3-dienes by dual photoredox and chromium catalysis. ACS. Catal. 2020, 10, 1621-7.
107. Liu, J.; Lu, L.; Luo, Y.; et al. Photoredox-enabled chromium-catalyzed alkene diacylations. ACS. Catal. 2022, 12, 1879-85.
108. Wu, J.; Xu, X.; Duan, C.; et al. Diastereoselective 1,2-difunctionalization of 1,3-enynes enabled by merging photoexcited Hantzsch ester with chromium catalysis. Org. Chem. Front. 2024, 11, 284-9.
109. Hu, Q.; Song, S.; Zeng, T.; et al. 1,3-butadiene dicarbofunctionalization enabled by the dual role of diaryl ketone in photo-HAT/chromium catalysis. Org. Lett. 2024, 26, 1550-5.
110. Yan, H.; Zhang, D.; Liu, Y.; et al. Photoredox chromium and cobalt dual catalysis for carbonyl allylation with butadiene via allyl radical intermediates. Org. Chem. Front. 2024, 11, 684-9.
111. Li, F.; Lin, S.; Chen, Y.; et al. Photocatalytic generation of π-allyltitanium complexes via radical intermediates. Angew. Chem. Int. Ed. Engl. 2021, 60, 1561-6.
112. Li, F.; Lin, S.; Li, X.; Shi, L. Photocatalytic generation of π-allyltitanium complexes from butadiene via a radical strategy. Synthesis 2021, 53, 1889-900.
113. Hao, E.; Lu, B.; Liu, Y.; et al. Difunctionalization of 1,3-butadiene via sequential radical thiol-ene reaction and allylation by dual photoredox and titanium catalysis. Org. Lett. 2023, 25, 5094-9.
114. Yan, H.; Shan, J. R.; Zhang, F.; et al. Radical crotylation of aldehydes with 1,3-butadiene by photoredox cobalt and titanium dual catalysis. Org. Lett. 2023, 25, 7694-9.
115. Bian, K. J.; Nemoto, D. J.; Kao, S. C.; et al. Modular difunctionalization of unactivated alkenes through bio-inspired radical ligand transfer catalysis. J. Am. Chem. Soc. 2022, 144, 11810-21.
116. Li, C.; Dong, X.; Wang, Z.; Zhang, B. Visible light-initiated manganese-catalyzed hydrosulfonylation of alkenes. Green. Chem. 2023, 25, 4122-8.





