REFERENCES

1. Liu, Z.; Wang, K.; Chen, Y.; Tan, T.; Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 2020, 3, 274-88.

2. Song, B.; Lin, R.; Lam, C. H.; Wu, H.; Tsui, T.; Yu, Y. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renew. Sustain. Energy. Rev. 2021, 135, 110370.

3. Sun, Z.; Zhao, H.; Yu, X.; Hu, J.; Chen, Z. Glucose photorefinery for sustainable hydrogen and value-added chemicals coproduction. Chem. Synth. 2024, 4, 4.

4. Ma, J.; Liu, K.; Yang, X.; et al. Recent advances and challenges in photoreforming of biomass-derived feedstocks into hydrogen, biofuels, or chemicals by using functional carbon nitride photocatalysts. ChemSusChem 2021, 14, 4903-22.

5. Shi, C.; Kang, F.; Zhu, Y.; et al. Photoreforming lignocellulosic biomass for hydrogen production: optimized design of photocatalyst and photocatalytic system. Chem. Eng. J. 2023, 452, 138980.

6. Yu, J.; Dappozze, F.; Martín-gomez, J.; et al. Glyceraldehyde production by photocatalytic oxidation of glycerol on WO3-based materials. Appl. Catal. B. Environ. 2021, 299, 120616.

7. Goh, B. H. H.; Chong, C. T.; Ge, Y.; et al. Progress in utilisation of waste cooking oil for sustainable biodiesel and biojet fuel production. Energy. Convers. Manag. 2020, 223, 113296.

8. Sun, C.; Hu, Y.; Sun, F.; et al. Comparison of biodiesel production using a novel porous Zn/Al/Co complex oxide prepared from different methods: physicochemical properties, reaction kinetic and thermodynamic studies. Renew. Energy. 2022, 181, 1419-30.

9. Stelmachowski, M.; Marchwicka, M.; Grabowska, E.; Diak, M. The photocatalytic conversion of (biodiesel derived) glycerol to hydrogen - a short review and preliminary experimental results part 1: a review. J. Adv. Oxid. Technol. 2014, 17, 167-78.

10. Ciriminna, R.; Pina, C. D.; Rossi, M.; Pagliaro, M. Understanding the glycerol market. Eur. J. Lipid. Sci. Technol. 2014, 116, 1432-9.

11. Estahbanati MR, Feilizadeh M, Attar F, Iliuta MC. Current developments and future trends in photocatalytic glycerol valorization: process analysis. React. Chem. Eng. 2021, 6, 197-219.

12. Luo, L.; Chen, W.; Xu, S. M.; et al. Selective photoelectrocatalytic glycerol oxidation to dihydroxyacetone via enhanced middle hydroxyl adsorption over a Bi2O3-incorporated catalyst. J. Am. Chem. Soc. 2022, 144, 7720-30.

13. Liu, D.; Liu, J. C.; Cai, W.; et al. Selective photoelectrochemical oxidation of glycerol to high value-added dihydroxyacetone. Nat. Commun. 2019, 10, 1779.

14. Saidi, M.; Moradi, P. Conversion of biodiesel synthesis waste to hydrogen in membrane reactor: theoretical study of glycerol steam reforming. Int. J. Hydrogen. Energy. 2020, 45, 8715-26.

15. Bivona, L. A.; Vivian, A.; Fusaro, L.; Fiorilli, S.; Aprile, C. Design and catalytic applications of 1D tubular nanostructures: improving efficiency in glycerol conversion. Appl. Catal. B. Environ. 2019, 247, 182-90.

16. Morales, D. M.; Jambrec, D.; Kazakova, M. A.; et al. Electrocatalytic conversion of glycerol to oxalate on Ni oxide nanoparticles-modified oxidized multiwalled carbon nanotubes. ACS. Catal. 2022, 12, 982-92.

17. Chen, J.; Yan, S.; Zhang, X.; Tyagi, R. D.; Surampalli, R. Y.; Valéro, J. R. Chemical and biological conversion of crude glycerol derived from waste cooking oil to biodiesel. Waste. Manag. 2018, 71, 164-75.

18. Tran, N. H.; Kannangara, G. S. Conversion of glycerol to hydrogen rich gas. Chem. Soc. Rev. 2013, 42, 9454-79.

19. Lakshmana Reddy, N.; Cheralathan, K. K.; Durga Kumari, V.; Neppolian, B.; Muthukonda Venkatakrishnan, S. Photocatalytic reforming of biomass derived crude glycerol in water: a sustainable approach for improved hydrogen generation using Ni(OH)2 decorated TiO2 nanotubes under solar light irradiation. ACS. Sustain. Chem. Eng. 2018, 6, 3754-64.

20. Zhao, S.; Dai, Z.; Guo, W.; Chen, F.; Liu, Y.; Chen, R. Highly selective oxidation of glycerol over Bi/Bi3.64Mo0.36O6.55 heterostructure: dual reaction pathways induced by photogenerated 1O2 and holes. Appl. Catal. B. Environ. 2019, 244, 206-14.

21. Shen, Y.; Mamakhel, A.; Liu, X.; et al. Promotion mechanisms of Au supported on TiO2 in thermal- and photocatalytic glycerol conversion. J. Phys. Chem. C. 2019, 123, 19734-41.

22. Zhang, Z.; Wang, M.; Zhou, H.; Wang, F. Surface sulfate ion on CdS catalyst enhances syngas generation from biopolyols. J. Am. Chem. Soc. 2021, 143, 6533-41.

23. Chang, J.; Song, F.; Hou, Y.; et al. Molybdenum, tungsten doped cobalt phosphides as efficient catalysts for coproduction of hydrogen and formate by glycerol electrolysis. J. Colloid. Interface. Sci. 2024, 665, 152-62.

24. Estahbanati, M. K.; Feilizadeh, M.; Iliuta, M. C. Photocatalytic valorization of glycerol to hydrogen: optimization of operating parameters by artificial neural network. Appl. Catal. B. Environ. 2017, 209, 483-92.

25. Guo, L.; Sun, Q.; Marcus, K.; et al. Photocatalytic glycerol oxidation on AuxCu–CuS@TiO2 plasmonic heterostructures. J. Mater. Chem. A. 2018, 6, 22005-12.

26. Xiao, Y.; Wang, M.; Liu, D.; et al. Selective photoelectrochemical oxidation of glycerol to glyceric acid on (002) facets exposed WO3 nanosheets. Angew. Chem. Int. Ed. Engl. 2024, 63, e202319685.

27. Yu, X.; Yu, Z.; Zhao, H.; Gates, I. D.; Hu, J. Photothermal catalytic H2 production over hierarchical porous CaTiO3 with plasmonic gold nanoparticles. Chem. Synth. 2023, 3, 3.

28. Ouyang, J.; Liu, X.; Wang, B. H.; et al. WO3 photoanode with predominant exposure of {202} facets for enhanced selective oxidation of glycerol to glyceraldehyde. ACS. Appl. Mater. Interfaces. , 2022, 23536-45.

29. Lu, Y.; Lee, B. G.; Lin, C.; et al. Solar-driven highly selective conversion of glycerol to dihydroxyacetone using surface atom engineered BiVO4 photoanodes. Nat. Commun. 2024, 15, 5475.

30. Yu, J.; González-Cobos, J.; Dappozze, F.; et al. WO3-based materials for photoelectrocatalytic glycerol upgrading into glyceraldehyde: unravelling the synergistic photo- and electro-catalytic effects. Appl. Catal. B. Environ. 2022, 318, 121843.

31. Kim, D.; Oh, L. S.; Tan, Y. C.; Song, H.; Kim, H. J.; Oh, J. Enhancing glycerol conversion and selectivity toward glycolic acid via precise nanostructuring of electrocatalysts. ACS. Catal. 2021, 11, 14926-31.

32. Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings, G. J. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chem. Commun. 2002, 696-7.

33. Zhang, X.; Zhou, D.; Wang, X.; et al. Overcoming the deactivation of Pt/CNT by introducing CeO2 for selective base-free glycerol-to-glyceric acid oxidation. ACS. Catal. 2020, 10, 3832-7.

34. Yan, H.; Yao, S.; Zhao, S.; et al. Insight into the basic strength-dependent catalytic performance in aqueous phase oxidation of glycerol to glyceric acid. Chem. Eng. Sci. 2021, 230, 116191.

35. Sanwald, K. E.; Berto, T. F.; Jentys, A.; Camaioni, D. M.; Gutiérrez, O. Y.; Lercher, J. A. Kinetic coupling of water splitting and photoreforming on SrTiO3-based photocatalysts. ACS. Catal. 2018, 8, 2902-13.

36. Li, Y.; Zhang, D.; Qiao, W.; et al. Nanostructured heterogeneous photocatalyst materials for green synthesis of valuable chemicals. Chem. Synth. 2022, 2, 9.

37. Lin, J.; Wu, X.; Xie, S.; et al. Visible-light-driven cleavage of C-O linkage for lignin valorization to functionalized aromatics. ChemSusChem 2019, 12, 5023-31.

38. Holmes, M. A.; Townsend, T. K.; Osterloh, F. E. Quantum confinement controlled photocatalytic water splitting by suspended CdSe nanocrystals. Chem. Commun. 2012, 48, 371-3.

39. Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 2014, 114, 9824-52.

40. Choi, W.; Termin, A.; Hoffmann, M. R. The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem. 1994, 98, 13669-79.

41. Li, J.; Yang, W.; Wu, A.; Zhang, X.; Xu, T.; Liu, B. Band-gap tunable 2D hexagonal (GaN)1-x(ZnO)x solid-solution nanosheets for photocatalytic water splitting. ACS. Appl. Mater. Interfaces. 2020, 12, 8583-91.

42. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406-13.

43. Chen, J.; Chen, J.; Li, Y. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation. J. Mater. Chem. A. 2017, 5, 24116-25.

44. Song, J.; Zhao, H.; Sun, R.; Li, X.; Sun, D. An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP~0.33S~1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo- and hetero-junctions. Energy. Environ. Sci. 2017, 10, 225-35.

45. Yu, G.; Qian, J.; Zhang, P.; et al. Collective excitation of plasmon-coupled Au-nanochain boosts photocatalytic hydrogen evolution of semiconductor. Nat. Commun. 2019, 10, 4912.

46. Zhao, H.; Li, C. F.; Yong, X.; et al. Coproduction of hydrogen and lactic acid from glucose photocatalysis on band-engineered Zn1-xCdxS homojunction. iScience 2021, 24, 102109.

47. Liu, M.; Jing, D.; Zhou, Z.; Guo, L. Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.

48. Gao, R.; Cheng, B.; Fan, J.; Yu, J.; Ho, W. ZnxCd1-xS quantum dot with enhanced photocatalytic H2-production performance. Chinese. J. Catal. 2021, 42, 15-24.

49. Copeland, J. R.; Santillan, I. A.; Schimming, S. M.; Ewbank, J. L.; Sievers, C. Surface interactions of glycerol with acidic and basic metal oxides. J. Phys. Chem. C. 2013, 117, 21413-25.

50. An, Z.; Zhang, Z.; Huang, Z.; et al. Pt1 enhanced C-H activation synergistic with Ptn catalysis for glycerol cascade oxidation to glyceric acid. Nat. Commun. 2022, 13, 5467.

51. Sandrini, R. M.; Sempionatto, J. R.; Herrero, E.; Feliu, J. M.; Souza-Garcia, J.; Angelucci, C. A. Mechanistic aspects of glycerol electrooxidation on Pt(111) electrode in alkaline media. Electrochem. Commun. 2018, 86, 149-52.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/