REFERENCES

1. Zhu, Y.; Romain, C.; Williams, C. K. Sustainable polymers from renewable resources. Nature 2016, 540, 354-62.

2. Xu, S.; Wang, R.; Gasser, T.; et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 2022, 609, 299-306.

3. Lu, X.; Cao, L.; Wang, H.; et al. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 8206-13.

4. Song, J.; Chen, C.; Zhu, S.; et al. Processing bulk natural wood into a high-performance structural material. Nature 2018, 554, 224-8.

5. Hou, Q.; Qi, X.; Zhen, M.; et al. Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural. Green. Chem. 2021, 23, 119-231.

6. Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1499-597.

7. Corma, A.; Iborra, S.; Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 2007, 107, 2411-502.

8. Liu, W. J.; Li, W. W.; Jiang, H.; Yu, H. Q. Fates of chemical elements in biomass during its pyrolysis. Chem. Rev. 2017, 117, 6367-98.

9. Wu, X.; Fan, X.; Xie, S.; et al. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions. Nat. Catal. 2018, 1, 772-80.

10. Zhang, Z.; Song, J.; Han, B. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem. Rev. 2017, 117, 6834-80.

11. Petridis, L.; Smith, J. C. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. Nat. Rev. Chem. 2018, 2, 382-9.

12. Zhang, X.; Wilson, K.; Lee, A. F. Heterogeneously catalyzed hydrothermal processing of C5-C6 sugars. Chem. Rev. 2016, 116, 12328-68.

13. Mostofian, B.; Cai, C. M.; Smith, M. D.; et al. Local phase separation of Co-solvents enhances pretreatment of biomass for bioenergy applications. J. Am. Chem. Soc. 2016, 138, 10869-78.

14. Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Principles and applications of photothermal catalysis. Chem. Catalysis. 2022, 2, 52-83.

15. Wu, X.; Luo, N.; Xie, S.; et al. Photocatalytic transformations of lignocellulosic biomass into chemicals. Chem. Soc. Rev. 2020, 49, 6198-223.

16. Liu, X.; Duan, X.; Wei, W.; Wang, S.; Ni, B. Photocatalytic conversion of lignocellulosic biomass to valuable products. Green. Chem. 2019, 21, 4266-89.

17. Feng, S.; Nguyen, P. T. T.; Ma, X.; Yan, N. Photorefinery of biomass and plastics to renewable chemicals using heterogeneous catalysts. Angew. Chem. Int. Ed. Engl. 2024, 63, e202408504.

18. Nwosu, U.; Wang, A.; Palma, B.; et al. Selective biomass photoreforming for valuable chemicals and fuels: a critical review. Renew. Sustain. Energy. Rev. 2021, 148, 111266.

19. Sun, L.; Luo, N. Catalyst design and structure control for photocatalytic refineries of cellulosic biomass to fuels and chemicals. J. Energy. Chem. 2024, 94, 102-27.

20. Hang, T.; Wu, L.; Liu, W.; Yang, L.; Zhang, T. Research progress of bifunctional photocatalysts for biomass conversion and fuel production. Adv. Energy. and. Sustain. Res. 2024, 5, 2400069.

21. Xu, X.; Shi, L.; Zhang, S.; et al. Photocatalytic reforming of lignocellulose: a review. Chem. Eng. J. 2023, 469, 143972.

22. Skillen, N.; Daly, H.; Lan, L.; et al. Photocatalytic reforming of biomass: what role will the technology play in future energy systems. Top. Curr. Chem. 2022, 380, 33.

23. Yan, W.; Zhang, D.; Sun, Y.; et al. Structural sensitivity of heterogeneous catalysts for sustainable chemical synthesis of gluconic acid from glucose. Chin. J. Catal. 2020, 41, 1320-36.

24. Zhou, B.; Song, J.; Zhang, Z.; Jiang, Z.; Zhang, P.; Han, B. Highly selective photocatalytic oxidation of biomass-derived chemicals to carboxyl compounds over Au/TiO2. Green. Chem. 2017, 19, 1075-81.

25. Omri, M.; Sauvage, F.; Busby, Y.; Becuwe, M.; Pourceau, G.; Wadouachi, A. Gold catalysis and photoactivation: a fast and selective procedure for the oxidation of free sugars. ACS. Catal. 2018, 8, 1635-9.

26. Colmenares, J. C.; Magdziarz, A.; Bielejewska, A. High-value chemicals obtained from selective photo-oxidation of glucose in the presence of nanostructured titanium photocatalysts. Bioresour. Technol. 2011, 102, 11254-7.

27. Payormhorm, J.; Chuangchote, S.; Kiatkittipong, K.; Chiarakorn, S.; Laosiripojana, N. Xylitol and gluconic acid productions via photocatalytic-glucose conversion using TiO2 fabricated by surfactant-assisted techniques: effects of structural and textural properties. Mater. Chem. Phys. 2017, 196, 29-36.

28. Vià L, Recchi C, Gonzalez-yañez EO, Davies TE, Lopez-sanchez JA. Visible light selective photocatalytic conversion of glucose by TiO2. Appl. Catal. B. Environ. 2017, 202, 281-8.

29. Yin, J.; Zhang, Q.; Yang, C.; Zhang, B.; Deng, K. Highly selective oxidation of glucose to gluconic acid and glucaric acid in water catalyzed by an efficient synergistic photocatalytic system. Catal. Sci. Technol. 2020, 10, 2231-41.

30. Zhang, Q.; Xiang, X.; Ge, Y.; Yang, C.; Zhang, B.; Deng, K. Selectivity enhancement in the g-C3N4-catalyzed conversion of glucose to gluconic acid and glucaric acid by modification of cobalt thioporphyrazine. J. Catal. 2020, 388, 11-9.

31. Zhang, Q.; Ge, Y.; Yang, C.; Zhang, B.; Deng, K. Enhanced photocatalytic performance for oxidation of glucose to value-added organic acids in water using iron thioporphyrazine modified SnO2. Green. Chem. 2019, 21, 5019-29.

32. Chen, R.; Yang, C.; Zhang, Q.; Zhang, B.; Deng, K. Visible-light-driven selective oxidation of glucose in water with H-ZSM-5 zeolite supported biomimetic photocatalyst. J. Catal. 2019, 374, 297-305.

33. Wang, J.; Zhao, H.; Chen, L.; et al. Selective cellobiose photoreforming for simultaneous gluconic acid and syngas production in acidic conditions. Appl. Catal. B. Environ. 2024, 344, 123665.

34. Wang, J.; Zhao, H.; Larter, S. R.; Kibria, M. G.; Hu, J. One-pot sequential cascade reaction for selective gluconic acid production from cellulose photobiorefining. Chem. Commun. 2023, 59, 3451-4.

35. Abednatanzi, S.; Gohari Derakhshandeh, P.; Leus, K.; et al. Metal-free activation of molecular oxygen by covalent triazine frameworks for selective aerobic oxidation. Sci. Adv. 2020, 6, eaaz2310.

36. Sun, X.; Li, L.; Jin, S.; et al. Interface boosted highly efficient selective photooxidation in Bi3O4Br/Bi2O3 heterojunctions. eScience 2023, 3, 100095.

37. Bai, X.; Hou, Q.; Qian, H.; et al. Selective oxidation of glucose to gluconic acid and glucaric acid with chlorin e6 modified carbon nitride as metal-free photocatalyst. Appl. Catal. B. Environ. 2022, 303, 120895.

38. Xia, T.; Ju, M.; Qian, H.; et al. Photocatalytic fenton-like system with atomic Fe on carbon nitride boost selective glucose oxidation towards gluconic acid. J. Catal. 2024, 429, 115257.

39. Lewis, R. J.; Ueura, K.; Liu, X.; et al. Highly efficient catalytic production of oximes from ketones using in situ-generated H2O2. Science 2022, 376, 615-20.

40. Jin, Z.; Wang, L.; Zuidema, E.; et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 2020, 367, 193-7.

41. Wang, J.; Chen, L.; Zhao, H.; et al. In situ photo-fenton-like tandem reaction for selective gluconic acid production from glucose photo-oxidation. ACS. Catal. 2023, 13, 2637-46.

42. Shiraishi, Y.; Takii, T.; Hagi, T.; et al. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985-93.

43. Zhang, Y.; Pan, C.; Bian, G.; et al. H2O2 generation from O2 and H2O on a near-infrared absorbing porphyrin supramolecular photocatalyst. Nat. Energy. 2023, 8, 361-71.

44. Teng, Z.; Yang, H.; Zhang, Q.; et al. Atomically dispersed low-valent Au boosts photocatalytic hydroxyl radical production. Nat. Chem. 2024, 16, 1250-60.

45. Wang, J.; Zhao, Q.; Li, Z.; et al. Selective photocatalytic glucaric acid production from TEMPO-mediated glucose oxidation on alkalized carbon nitride. Appl. Catal. B. Environ. 2025, 360, 124526.

46. Kawai, T.; Sakata, T. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process. Nature 1980, 286, 474-6.

47. Wang, J. J.; Li, Z. J.; Li, X. B.; et al. Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. ChemSusChem 2014, 7, 1468-75.

48. Wakerley, D. W.; Kuehnel, M. F.; Orchard, K. L.; Ly, K. H.; Rosser, T. E.; Reisner, E. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst. Nat. Energy. 2017, 2, BFnenergy201721.

49. Kuehnel, M. F.; Reisner, E. Solar hydrogen generation from lignocellulose. Angew. Chem. Int. Ed. Engl. 2018, 57, 3290-6.

50. Uekert, T.; Kuehnel, M. F.; Wakerley, D. W.; Reisner, E. Plastic waste as a feedstock for solar-driven H2 generation. Energy. Environ. Sci. 2018, 11, 2853-7.

51. Luo, N.; Jiang, Z.; Shi, H.; Cao, F.; Xiao, T.; Edwards, P. Photo-catalytic conversion of oxygenated hydrocarbons to hydrogen over heteroatom-doped TiO2 catalysts. Int. J. Hydrogen. Energy. 2009, 34, 125-9.

52. Li, Y.; Wang, J.; Peng, S.; Lu, G.; Li, S. Photocatalytic hydrogen generation in the presence of glucose over ZnS-coated ZnIn2S4 under visible light irradiation. Int. J. Hydrogen. Energy. 2010, 35, 7116-26.

53. Ding, F.; Yu, H.; Liu, W.; et al. Au-Pt heterostructure cocatalysts on g-C3N4 for enhanced H2 evolution from photocatalytic glucose reforming. Materials. &. Design. 2024, 238, 112678.

54. Shi, C.; Eqi, M.; Shi, J.; Huang, Z.; Qi, H. Constructing 3D hierarchical TiO2 microspheres with enhanced mass diffusion for efficient glucose photoreforming under modulated reaction conditions. J. Colloid. Interface. Sci. 2023, 650, 1736-48.

55. Zhang, H.; Zhao, H.; Zhai, S.; et al. Electron-enriched Lewis acid-base sites on red carbon nitride for simultaneous hydrogen production and glucose isomerization. Appl. Catal. B. Environ. 2022, 316, 121647.

56. Yang, X.; Ma, J.; Sun, S.; Liu, Z.; Sun, R. K/O co-doping and introduction of cyano groups in polymeric carbon nitride towards efficient simultaneous solar photocatalytic water splitting and biorefineries. Green. Chem. 2022, 24, 2104-13.

57. Bai, F. Y.; Han, J. R.; Chen, J.; et al. The three-dimensionally ordered microporous CaTiO3 coupling Zn0.3Cd0.7S quantum dots for simultaneously enhanced photocatalytic H2 production and glucose conversion. J. Colloid. Interface. Sci. 2023, 638, 173-83.

58. Li, X.; Ma, J.; Fu, H.; et al. RuS2@CN-x with exposed (200) facet as a high-performance photocatalyst for selective C–C bond cleavage of biomass coupling with H–O bond cleavage of water to co-produce chemicals and H 2. Green. Chem. 2023, 25, 3236-46.

59. Ma, J.; Li, Y.; Jin, D.; et al. Functional B@mCN-assisted photocatalytic oxidation of biomass-derived pentoses and hexoses to lactic acid. Green. Chem. 2020, 22, 6384-92.

60. Ma, J.; Jin, D.; Li, Y.; et al. Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Appl. Catal. B. Environ. 2021, 283, 119520.

61. Ma, J.; Zhang, J.; Jin, D.; Yao, S.; Sun, R. LED white-light-driven photocatalysis for effective lignocellulose reforming to co-produce hydrogen and value-added chemicals via Zn2/O@IP-g-CN. J. Environ. Chem. Eng. 2022, 10, 108554.

62. Li, L.; Shen, F.; Smith, R. L.; Qi, X. Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature. Green. Chem. 2017, 19, 76-81.

63. Hou, Q.; Rehman, M. L. U.; Bai, X.; et al. Incorporation of MgO into nitrogen-doped carbon to regulate adsorption for near-equilibrium isomerization of glucose into fructose in water. Appl. Catal. B. Environ. 2024, 342, 123443.

64. Laiq, U. R. M.; Hou, Q.; Bai, X.; et al. Regulating the alkalinity of carbon nitride by magnesium doping to boost the selective isomerization of glucose to fructose. ACS. Sustainable. Chem. Eng. 2022, 10, 1986-93.

65. Chen, S. S.; Tsang, D. C.; Tessonnier, J. Comparative investigation of homogeneous and heterogeneous Brønsted base catalysts for the isomerization of glucose to fructose in aqueous media. Appl. Catal. B. Environ. 2020, 261, 118126.

66. Cao, Y.; Chen, D.; Meng, Y.; Saravanamurugan, S.; Li, H. Visible-light-driven prompt and quantitative production of lactic acid from biomass sugars over a N-TiO2 photothermal catalyst. Green. Chem. 2021, 23, 10039-49.

67. Ding, Y.; Cao, Y.; Chen, D.; et al. Relay photo/thermal catalysis enables efficient cascade upgrading of sugars to lactic acid: mechanism study and life cycle assessment. Chem. Eng. J. 2023, 452, 139687.

68. Zou, R.; Chen, Z.; Zhong, L.; et al. Nanocellulose-assisted molecularly engineering of nitrogen deficient graphitic carbon nitride for selective biomass photo-oxidation. Adv. Funct. Mater. 2023, 33, 2301311.

69. Liu, Z.; Ma, J.; Hong, M.; Sun, R. Potassium and sulfur dual sites on highly crystalline carbon nitride for photocatalytic biorefinery and CO2 reduction. ACS. Catal. 2023, 13, 2106-17.

70. Ma, J.; Li, X.; Li, Y.; et al. Single-atom zinc catalyst for co-production of hydrogen and fine chemicals in soluble biomass solution. Adv. Powder. Mater. 2022, 1, 100058.

71. Liu, K.; Ma, J.; Yang, X.; et al. Boosting electron kinetics of anatase TiO2 with carbon nanosheet for efficient photo-reforming of xylose into biomass-derived organic acids. J. Alloys. Compd. 2022, 906, 164276.

72. Li, Y.; Ma, J.; Jin, D.; et al. Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid. Appl. Catal. B. Environ. 2021, 291, 120123.

73. Jin, D.; Ma, J.; Sun, R. Nitrogen-doped biochar nanosheets facilitate charge separation of a Bi/Bi2O3 nanosphere with a Mott-Schottky heterojunction for efficient photocatalytic reforming of biomass. J. Mater. Chem. C. 2022, 10, 3500-9.

74. Jin, D.; Jiao, G.; Ren, W.; Zhou, J.; Ma, J.; Sun, R. Boosting photocatalytic performance for selective oxidation of biomass-derived pentoses and hexoses to lactic acid using hierarchically porous Cu/Cu2O/CuO@CA. J. Mater. Chem. C. 2021, 9, 16450-8.

75. Ma, J.; Li, Y.; Jin, D.; et al. Reasonable regulation of carbon/nitride ratio in carbon nitride for efficient photocatalytic reforming of biomass-derived feedstocks to lactic acid. Appl. Catal. B. Environ. 2021, 299, 120698.

76. Liu, Z.; Liu, K.; Sun, R.; Ma, J. Biorefinery-assisted ultra-high hydrogen evolution via metal-free black phosphorus sensitized carbon nitride photocatalysis. Chem. Eng. J. 2022, 446, 137128.

77. Liu, K.; Ma, J.; Yang, X.; et al. Phosphorus/oxygen co-doping in hollow-tube-shaped carbon nitride for efficient simultaneous visible-light-driven water splitting and biorefinery. Chem. Eng. J. 2022, 437, 135232.

78. Sun, S.; Zhang, J.; Hong, M.; Wen, J.; Ma, J.; Sun, R. Photocatalytic selective C–C bond cleavage of biomass-based monosaccharides and xylan to co-produce lactic acid and CO over an Fe-doped GaN catalyst. Ind. Crops. Prod. 2023, 204, 117361.

79. Sun, S.; Sun, S.; Liu, K.; Xiao, L.; Ma, J.; Sun, R. Construction of a metal-free photocatalyst via encapsulation of 1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene in a carboxymethylcellulose-based hydrogel for photocatalytic lactic acid production. Green. Chem. 2023, 25, 736-45.

80. Yang, X.; Liu, K.; Ma, J.; Sun, R. Carbon quantum dots anchored on 1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene for efficient selective photo splitting of biomass-derived sugars into lactic acid. Green. Chem. 2022, 24, 5894-903.

81. de Clippel, F.; Dusselier, M.; Van Rompaey, R.; et al. Fast and selective sugar conversion to alkyl lactate and lactic acid with bifunctional carbon-silica catalysts. J. Am. Chem. Soc. 2012, 134, 10089-101.

82. Mateo, D.; Cerrillo, J. L.; Durini, S.; Gascon, J. Fundamentals and applications of photo-thermal catalysis. Chem. Soc. Rev. 2021, 50, 2173-210.

83. Hong, J.; Xu, C.; Deng, B.; et al. Photothermal chemistry based on solar energy: from synergistic effects to practical applications. Adv. Sci. 2022, 9, e2103926.

84. Cheruvathoor, P. A.; Zoppellaro, G.; Konidakis, I.; et al. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nat. Nanotechnol. 2022, 17, 485-92.

85. Liu, Y.; Zhong, Q.; Xu, P.; et al. Solar thermal catalysis for sustainable and efficient polyester upcycling. Matter 2022, 5, 1305-17.

86. Xie, B.; Hu, D.; Kumar, P.; Ordomsky, V. V.; Khodakov, A. Y.; Amal, R. Heterogeneous catalysis via light-heat dual activation: a path to the breakthrough in C1 chemistry. Joule 2024, 8, 312-33.

87. Wang, H.; Cheng, X.; Li, Z.; Jing, L.; Hu, J. Photothermal catalytic enhancement of lignocellulosic biomass conversion: a more efficient way to produce high-value products and fuels. Chem. Eng. J. 2024, 496, 153772.

88. Zhang, B.; Li, J.; Guo, L.; Chen, Z.; Li, C. Photothermally promoted cleavage of β-1,4-glycosidic bonds of cellulosic biomass on Ir/HY catalyst under mild conditions. Appl. Catal. B. Environ. 2018, 237, 660-4.

89. Liang, J.; Jiang, J.; Cai, T.; et al. Advances in selective conversion of carbohydrates into 5-hydroxymethylfurfural. Green. Energy. Environ. 2024, 9, 1384-406.

90. Tsutsumi, K.; Kurata, N.; Takata, E.; Furuichi, K.; Nagano, M.; Tabata, K. Silicon semiconductor-assisted Brønsted acid-catalyzed dehydration: highly selective synthesis of 5-hydroxymethylfurfural from fructose under visible light irradiation. Appl. Catal. B. Environ. 2014, 147, 1009-14.

91. Han, P.; Tana, T.; Sarina, S.; et al. Plasmonic silver nanoparticles promoted sugar conversion to 5-hydroxymethylfurfural over catalysts of immobilised metal ions. Appl. Catal. B. Environ. 2021, 296, 120340.

92. Tana, T.; Han, P.; Brock, A. J.; et al. Photocatalytic conversion of sugars to 5-hydroxymethylfurfural using aluminium(III) and fulvic acid. Nat. Commun. 2023, 14, 4609.

93. Shi, Y.; Tana, T.; Yang, W.; et al. High-efficiency solar transformation of sugars via a heterogenous gallium(III) catalyst. Angew. Chem. Int. Ed. Engl. 2024, 63, e202409456.

94. Wang, A.; Berton, P.; Zhao, H.; Bryant, S. L.; Kibria, M. G.; Hu, J. Plasmon-enhanced 5-hydroxymethylfurfural production from the photothermal conversion of cellulose in a biphasic medium. ACS. Sustainable. Chem. Eng. 2021, 9, 16115-22.

95. Ye, X.; Zhong, M.; Cao, Z.; et al. Plasmon resonance enhanced palygorskite-based composite toward the photocatalytic reformation of cellulose biomass under full spectrum. Appl. Clay. Sci. 2023, 231, 106755.

96. Nayebi, M.; Faraji, A.; Bahadoran, A.; et al. TiO2/g-C3N4/SO3H(IL): unique usage of ionic liquid-based sulfonic acid as an efficient photocatalyst for visible-light-driven preparation of 5-HMF from cellulose and glucose. ACS. Appl. Mater. Interfaces. 2023, 15, 8054-65.

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/