REFERENCES
1. Přech J, Pizarro P, Serrano DP, Čejka J. From 3D to 2D zeolite catalytic materials. Chem Soc Rev 2018;47:8263-306.
2. Xu L, Ma T, Shen Y, et al. Rational manipulation of stacking arrangements in three-dimensional zeolites built from two-dimensional zeolitic nanosheets. Angew Chem Int Ed Engl 2020;59:19934-9.
3. Jiao M, Huang J, Xu H, et al. ECNU-36: a quasi-pure polymorph CH beta silicate composed of hierarchical nanosheet crystals for effective VOCs adsorption. Angew Chem Int Ed Engl 2020;59:17291-6.
4. Lei C, Dong Z, Martínez C, et al. A cationic oligomer as an organic template for direct synthesis of aluminosilicate ITH zeolite. Angew Chem Int Ed Engl 2020;59:15649-55.
5. Guefrachi Y, Sharma G, Xu D, et al. Steam-induced coarsening of single-unit-cell MFI zeolite nanosheets and its effect on external surface Brønsted acid catalysis. Angew Chem Int Ed Engl 2020;59:9579-85.
6. Yan K, Ye Z, Kong L, et al. Seed-induced synthesis of disc-cluster zeolite L mesocrystals with ultrashort c-axis: morphology control, decoupled mechanism, and enhanced adsorption. Acta Phys Chim Sin 2024;40:2308019.
7. Luo HY, Michaelis VK, Hodges S, Griffin RG, Román-Leshkov Y. One-pot synthesis of MWW zeolite nanosheets using a rationally designed organic structure-directing agent. Chem Sci 2015;6:6320-4.
8. Chen JQ, Li YZ, Hao QQ, et al. Controlled direct synthesis of single- to multiple-layer MWW zeolite. Natl Sci Rev 2021;8:nwaa236.
9. Shen X, Mao W, Ma Y, et al. A hierarchical MFI zeolite with a two-dimensional square mesostructure. Angew Chem Int Ed Engl 2018;57:724-8.
10. Zhang Y, Shen X, Gong Z, Han L, Sun H, Che S. Single-crystalline MFI zeolite with sheet-like mesopores layered along the a axis. Chemistry 2019;25:738-42.
11. Tai W, Dai W, Wu G, Li L. A simple strategy for synthesis of b-axis-oriented MFI zeolite macro-nanosheets. Chem Synth 2023;3:38.
12. Li B, Sun B, Qian X, et al. In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres. J Am Chem Soc 2013;135:1181-4.
13. Tao H, Yang H, Zhang Y, et al. Space-confined synthesis of nanorod oriented-assembled hierarchical MFI zeolite microspheres. J Mater Chem A 2013;1:13821-7.
14. Ren L, Guo Q, Zhang H, et al. Organotemplate-free and one-pot fabrication of nano-rod assembled plate-like micro-sized mordenite crystals. J Mater Chem 2012;22:6564-7.
15. Ye Z, Kong L, Zhao Y, et al. Alkalinity-controlled zeolite nucleation and growth: ultrafast synthesis of total-morphology zeolite L mesocrystals and adsorption evaluation. Chem Synth 2022;2:20.
16. Awala H, Gilson JP, Retoux R, et al. Template-free nanosized faujasite-type zeolites. Nat Mater 2015;14:447-51.
17. Yang XY, Tian G, Chen LH, et al. Well-organized zeolite nanocrystal aggregates with interconnected hierarchically micro-meso-macropore systems showing enhanced catalytic performance. Chemistry 2011;17:14987-95.
18. Sheng Z, Li H, Du K, et al. Observing a zeolite nucleus (subcrystal) with a uniform framework structure and its oriented attachment without single-molecule addition. Angew Chem Int Ed Engl 2021;60:13444-51.
19. Park W, Yu D, Na K, et al. Hierarchically structure-directing effect of multi-ammonium surfactants for the generation of MFI zeolite nanosheets. Chem Mater 2011;23:5131-7.
20. Xu D, Ma Y, Jing Z, et al. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets. Nat Commun 2014;5:4262.
21. Zhang Q, Li J, Wang X, et al. Silanol-engineered nonclassical growth of zeolite nanosheets from oriented attachment of amorphous protozeolite nanoparticles. J Am Chem Soc 2023;145:21231-41.
22. Zhang C, Lin F, Kong L, et al. c-Axis-penetrated mesoporous MWW zeolite nanosheets: preparation by H2O2-induced micro-explosion and their enhanced properties. Inorg Chem Front 2022;9:4030-40.
23. Lee Y, Park MB, Kim PS, et al. Synthesis and catalytic behavior of ferrierite zeolite nanoneedles. ACS Catal 2013;3:617-21.
24. Schlenker J, Rohrbaugh W, Chu P, Valyocsik E, Kokotailo G. The framework topology of ZSM-48: a high silica zeolite. Zeolites 1985;5:355-8.
25. Bhattacharya D, Tambe S, Sivasanker S. The influence of reaction temperature on the cracking mechanism of n-hexane over H-ZSM-48. Appl Catal A Gen 1997;154:139-53.
26. Zhao G, Teng J, Zhang Y, et al. Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions. Appl Catal A Gen 2006;299:167-74.
27. Mériaudeau P, Tuan VA, Nghiem VT, Sapaly G, Naccache C. Comparative evaluation of the catalytic properties of SAPO-31 and ZSM-48 for the hydroisomerization of N-Octane: effect of the acidity. J Catal 1999;185:435-44.
28. Meng J, Bai D, Zeyaodong P, Li C, Chen X, Liang C. Hydroisomerization of n-hexadecane over Pt/ZSM-48 catalysts: effects of metal-acid balance and crystal morphology. Micropor Mesopor Mat 2022;330:111637.
29. Zhang J, Huang Z, Xu L, et al. Verifying the olefin formation mechanism of the methanol-to-hydrocarbons reaction over H-ZSM-48. Catal Sci Technol 2019;9:2132-43.
30. Azhari NJ, Mardiana S, Kadja GT. ZSM-48 zeolites with controllable mesopore formation: synthesis, characterization, and catalytic performance. Chem Eng J Advances 2023;16:100533.
31. Kadja GTM, Azhari NJ, Mardiana S, Khalil M, Subagjo, Mahyuddin MH. Accelerated, mesoporogen-free synthesis of hierarchical nanorod ZSM-48 assisted by hydroxyl radicals. Ind Eng Chem Res 2021;60:17786-91.
32. Saenluang K, Srisuwanno W, Salakhum S, Rodaum C, Dugkhuntod P, Wattanakit C. Nanoporous Sn-substituted ZSM-48 nanostructures for glucose isomerization. ACS Appl Nano Mater 2021;4:11661-73.
33. Xue Y, Li S, Li J, et al. Enhancing propene selectivity in methanol and/or butene conversion by regulating channel systems over ZSM-5/ZSM-48 composite zeolites. Micropor Mesopor Mat 2021;312:110803.
34. Giordano G, Nagy J, Derouane E. Zeolite synthesis in presence of hexamethonium ions. J Mol Catal A Chem 2009;305:34-9.
35. Astafan A, Benghalem MA, Michelin L, et al. Synthesis of hierarchical ZSM-48 nano-zeolites. New J Chem 2018;42:4457-64.
36. Meng J, Li C, Chen X, Song C, Liang C. Seed-assisted synthesis of ZSM-48 zeolite with low SiO2/Al2O3 ratio for n-hexadecane hydroisomerization. Micropor Mesopor Mat 2020;309:110565.
37. Shang S, Ren L, Liu Q, et al. Ultrafast synthesis and regulating Al status of mesoporous ZSM-48 zeolite via a pretreated-seed-solution-assisted strategy. Cryst Growth Des 2023;23:5008-18.
38. Liu W, Zhang X, Yu Q, et al. Unconventional seed-assisted strategy for Al-rich hierarchical ZSM-48 zeolite. J Colloid Interface Sci 2024;653:1715-24.
39. Liu W, Li J, Yu Q, et al. Construction of a one-dimensional Al-rich ZSM-48 zeolite with a hollow structure. ACS Appl Mater Interfaces 2022;14:52025-34.
40. Wang R, Peng Z, Wu P, et al. Direct synthesis of nanorod stacked “nest-like” hierarchical ZSM-48 hollow spheres using a triazine-based bolaform organic structure-directing agent. Inorg Chem Front 2022;9:2016-22.
41. Zhang Y, Ma Y, Che S. Synthesis of lamellar mesostructured ZSM-48 nanosheets. Chem Mater 2018;30:1839-43.
42. Zhang K, Li C, Liu Z, Wang M, Yan X, Xi H. Tailoring hierarchical zeolites with designed cationic surfactants and their high catalytic performance. Chem Asian J 2017;12:2711-9.
43. Ye Z, Zhao Y, Zhang H, et al. Mesocrystal morphology regulation by “alkali metals ion switch”: re-examining zeolite nonclassical crystallization in seed-induced process. J Colloid Interface Sci 2022;608:1366-76.
44. Lin F, Ye Z, Kong L, et al. Facile morphology and porosity regulation of zeolite ZSM-5 mesocrystals with synergistically enhanced catalytic activity and shape selectivity. Nanomaterials 2022;12:1601.
45. Liu W, Li J, Liu Z, et al. Direct preparation of *MRE zeolites with ultralarge mesoporosity: strategy and working mechanism. ACS Appl Mater Interfaces 2021;13:31756-65.
46. Zhai M, Ding H, Zeng S, et al. Aluminous ZSM-48 zeolite synthesis using a hydroisomerization intermediate mimicking allyltrimethylammonium chloride as a structure-directing agent. Ind Eng Chem Res 2020;59:11139-48.
47. Fan W, Li R, Ma J, Fan B, Dou T, Cao J. Crystallization mechanism study on ZSM-48 in the system Na2O-Al2O3-SiO2-H2N(CH2)6NH2. Micropor Mat 1997;8:131-40.
48. Sadrara M, Khorrami MK, Darian JT, Garmarudi AB. Fabrication of highly mesoporous ZSM-48 zeolite by anionic surfactant-organosilane system for catalytic conversion of methanol to gasoline. Solid State Sci 2022;128:106888.
49. Zhao Y, Ye Z, Wang L, et al. Engineering fractal MTW zeolite mesocrystal: particle-based dendritic growth via twinning-plane induced crystallization. Cryst Growth Des 2018;18:1101-8.
50. Fan W, Li R, Fan B, Ma J, Cao J. Effects of introduction of different alkali metal halides on crystallization and characteristics of ZSM-48 in a solid reaction mixture system effects of alkali metal chlorides. Appl Catal A Gen 1996;143:299-308.
51. Kim SB, You SJ, Kim YT, et al. Dehydration of D-xylose into furfural over H-zeolites. Korean J Chem Eng 2011;28:710-6.
52. Shao Y, Sun K, Zhang L, et al. Balanced distribution of Brønsted acidic sites and Lewis acidic sites for highly selective conversion of xylose into levulinic acid/ester over Zr-beta catalysts. Green Chem 2019;21:6634-45.
53. Valadares DS, Clemente MCH, de Freitas EF, Martins GAV, Dias JA, Dias SCL. Niobium on BEA dealuminated zeolite for high selectivity dehydration reactions of ethanol and xylose into diethyl ether and furfural. Nanomaterials 2020;10:1269.