1. Solutions for plastic pollution. Nat Geosci 2023;16:655.
2. OECD. Global plastics outlook: policy scenarios to 2060. Paris: OECD Publishing; 2022.
3. Nava V, Chandra S, Aherne J, et al. Plastic debris in lakes and reservoirs. Nature 2023;619:317-22.
4. Pinheiro HT, MacDonald C, Santos RG, et al. Plastic pollution on the world’s coral reefs. Nature 2023;619:311-6.
5. Ali W, Ali H, Souissi S, Zinck P. Are bioplastics an ecofriendly alternative to fossil fuel plastics? Environ Chem Lett 2023;21:1991-2002.
6. Leslie HA, van Velzen MJM, Brandsma SH, Vethaak AD, Garcia-Vallejo JJ, Lamoree MH. Discovery and quantification of plastic particle pollution in human blood. Environ Int 2022;163:107199.
7. Landrigan PJ, Raps H, Cropper M, et al. The minderoo-monaco commission on plastics and human health. Ann Glob Health 2023;89:23.
8. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3:e1700782.
9. Howard SA, McCarthy RR. Modulating biofilm can potentiate activity of novel plastic-degrading enzymes. NPJ Biofilms Microbiomes 2023;9:72.
10. Lau WWY, Shiran Y, Bailey RM, et al. Evaluating scenarios toward zero plastic pollution. Science 2020;369:1455-61.
11. Kwon D. Three ways to solve the plastics pollution crisis. Nature 2023;616:234-7.
12. Zhang W, Kim S, Wahl L, et al. Low-temperature upcycling of polyolefins into liquid alkanes via tandem cracking-alkylation. Science 2023;379:807-11.
13. Dong Q, Lele AD, Zhao X, et al. Depolymerization of plastics by means of electrified spatiotemporal heating. Nature 2023;616:488-94.
14. Ahrens A, Bonde A, Sun H, et al. Catalytic disconnection of C-O bonds in epoxy resins and composites. Nature 2023;617:730-7.
15. Xu Z, Munyaneza NE, Zhang Q, et al. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 2023;381:666-71.
16. Jehanno C, Alty JW, Roosen M, et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 2022;603:803-14.
17. Jung JM, Cho SH, Jung S, et al. Disposal of plastic mulching film through CO2-assisted catalytic pyrolysis as a strategic means for microplastic mitigation. J Hazard Mater 2022;430:128454.
18. Plastic upcycling. Nat Catal 2019;2:945-6.
19. Jie X, Li W, Slocombe D, et al. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nat Catal 2020;3:902-12.
20. Conk RJ, Hanna S, Shi JX, et al. Catalytic deconstruction of waste polyethylene with ethylene to form propylene. Science 2022;377:1561-6.
21. Mark LO, Cendejas MC, Hermans I. The use of heterogeneous catalysis in the chemical valorization of plastic waste. ChemSusChem 2020;13:5808-36.
22. Dong Z, Chen W, Xu K, Liu Y, Wu J, Zhang F. Understanding the structure-activity relationships in catalytic conversion of polyolefin plastics by zeolite-based catalysts: a critical review. ACS Catal 2022;12:14882-901.
23. Yuan H, Li C, Shan R, Zhang J, Wu Y, Chen Y. Recent developments on the zeolites catalyzed polyolefin plastics pyrolysis. Fuel Process Technol 2022;238:107531.
24. Zhang Q, Yu J, Corma A. Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv Mater 2020;32:e2002927.
25. He J, Wu Z, Gu Q, et al. Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels. Angew Chem Int Ed Engl 2021;60:23713-21.
26. Wang H, Wang L, Xiao FS. Metal@Zeolite hybrid materials for catalysis. ACS Cent Sci 2020;6:1685-97.
27. Zhang Q, Gao S, Yu J. Metal sites in zeolites: synthesis, characterization, and catalysis. Chem Rev 2023;123:6039-106.
28. Lee WT, van Muyden A, Bobbink FD, Mensi MD, Carullo JR, Dyson PJ. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat Commun 2022;13:4850.
29. Ju C, Li M, Fang Y, Tan T. Efficient hydro-deoxygenation of lignin derived phenolic compounds over bifunctional catalysts with optimized acid/metal interactions. Green Chem 2018;20:4492-9.
30. Cheng K, Smulders LCJ, van der Wal LI, et al. Maximizing noble metal utilization in solid catalysts by control of nanoparticle location. Science 2022;377:204-8.
31. Duan J, Chen W, Wang C, et al. Coking-resistant polyethylene upcycling modulated by zeolite micropore diffusion. J Am Chem Soc 2022;144:14269-77.
32. Li L, Luo H, Shao Z, et al. Converting plastic wastes to naphtha for closing the plastic loop. J Am Chem Soc 2023;145:1847-54.
33. Du J, Zeng L, Yan T, et al. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons. Nat Nanotechnol 2023;18:772-9.
34. Kang Q, Chu M, Xu P, et al. Entropy confinement promotes hydrogenolysis activity for polyethylene upcycling. Angew Chem Int Ed Engl 2023;62:e202313174.
35. Soltani M, Rorrer JE. Converting waste plastic to liquid organic hydrogen carriers. Angew Chem Int Ed Engl 2023;62:e202314530.
36. Jahirul MI, Faisal F, Rasul MG, Schaller D, Khan MMK, Dexter RB. Automobile fuels (diesel and petrol) from plastic pyrolysis oil - Production and characterisation. Energy Rep 2022;8:730-5.
37. Vellaiyan S. Energy extraction from waste plastics and its optimization study for effective combustion and cleaner exhaust engaging with water and cetane improver: a response surface methodology approach. Environ Res 2023;231:116113.
38. Sharuddin SD, Abnisa F, Wan Daud WMA, Aroua MK. Energy recovery from pyrolysis of plastic waste: study on non-recycled plastics (NRP) data as the real measure of plastic waste. Energy Convers Manag 2017;148:925-34.
39. Mishra R, Kumar A, Singh E, Kumar S. Recent research advancements in catalytic pyrolysis of plastic waste. ACS Sustainable Chem Eng 2023;11:2033-49.
40. Corma A. Inorganic Solid Acids and Their use in acid-catalyzed hydrocarbon reactions. Chem Rev 1995;95:559-614.
41. Corma A, Orchillés A. Current views on the mechanism of catalytic cracking. Microporous Mesoporous Mater 2000;35-6:21-30.
42. Weitkamp J. Catalytic hydrocracking - mechanisms and versatility of the process. ChemCatChem 2012;4:292-306.
43. Miandad R, Barakat M, Aburiazaiza AS, Rehan M, Nizami A. Catalytic pyrolysis of plastic waste: a review. Process Saf Environ Prot 2016;102:822-38.
44. Coelho A, Costa L, Marques M, Fonseca I, Lemos M, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A Gen 2012;413-4:183-91.
45. Santos BPS, Almeida D, Marques MDFV, Henriques CA. Petrochemical feedstock from pyrolysis of waste polyethylene and polypropylene using different catalysts. Fuel 2018;215:515-21.
46. Figueiredo AL, Araujo AS, Linares M, et al. Catalytic cracking of LDPE over nanocrystalline HZSM-5 zeolite prepared by seed-assisted synthesis from an organic-template-free system. J Anal Appl Pyrol 2016;117:132-40.
47. Serrano D, Aguado J, Escola J, Rodríguez J, San Miguel G. An investigation into the catalytic cracking of LDPE using Py-GC/MS. J Anal Appl Pyrol 2005;74:370-8.
48. Ratnasari DK, Nahil MA, Williams PT. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J Anal Appl Pyrol 2017;124:631-7.
49. Grün M, Unger KK, Matsumoto A, Tsutsumi K. Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater 1999;27:207-16.
50. Ungureanu A, Dragoi B, Hulea V, et al. Effect of aluminium incorporation by the “pH-adjusting” method on the structural, acidic and catalytic properties of mesoporous SBA-15. Microporous Mesoporous Mater 2012;163:51-64.
51. Zhang Z, Gora-Marek K, Watson JS, et al. Recovering waste plastics using shape-selective nano-scale reactors as catalysts. Nat Sustain 2019;2:39-42.
52. Mosio-Mosiewski J, Warzala M, Morawski I, Dobrzanski T. High-pressure catalytic and thermal cracking of polyethylene. Fuel Process Technol 2007;88:359-64.
53. Munir D, Irfan MF, Usman MR. Hydrocracking of virgin and waste plastics: a detailed review. Renew Sustain Energy Rev 2018;90:490-515.
54. Hu K, Yang Y, Wang Y, Duan X, Wang S. Catalytic carbon and hydrogen cycles in plastics chemistry. Chem Catal 2022;2:724-61.
55. Celik G, Kennedy RM, Hackler RA, et al. Upcycling single-use polyethylene into high-quality liquid products. ACS Cent Sci 2019;5:1795-803.
56. Tennakoon A, Wu X, Paterson AL, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism. Nat Catal 2020;3:893-901.
57. Jia C, Xie S, Zhang W, et al. Deconstruction of high-density polyethylene into liquid hydrocarbon fuels and lubricants by hydrogenolysis over Ru catalyst. Chem Catal 2021;1:437-55.
58. Chen L, Meyer LC, Kovarik L, et al. Disordered, sub-nanometer ru structures on CeO2 are highly efficient and selective catalysts in polymer upcycling by hydrogenolysis. ACS Catal 2022;12:4618-27.
59. Kots PA, Liu S, Vance BC, Wang C, Sheehan JD, Vlachos DG. Polypropylene plastic waste conversion to lubricants over Ru/TiO2 catalysts. ACS Catal 2021;11:8104-15.
60. Jing Y, Wang Y, Furukawa S, et al. Towards the circular economy: converting aromatic plastic waste back to arenes over a Ru/Nb2O5 catalyst. Angew Chem Int Ed Engl 2021;60:5527-35.
61. Vance BC, Kots PA, Wang C, et al. Single pot catalyst strategy to branched products via adhesive isomerization and hydrocracking of polyethylene over platinum tungstated zirconia. Appl Catal B Environ 2021;299:120483.
62. Wang W, Liu CJ, Wu W. Bifunctional catalysts for the hydroisomerization of n-alkanes: the effects of metal-acid balance and textural structure. Catal Sci Technol 2019;9:4162-87.
63. Maesen TLM, Calero S, Schenk M, Smit B. Alkane hydrocracking: shape selectivity or kinetics? J Catal 2004;221:241-51.
64. Steijns M, Froment GF. Hydroisomerization and hydrocracking. 3. Kinetic analysis of rate data for n-decane and n-dodecane. Ind Eng Chem Prod Res Dev 1981;20:660-8.
65. Rorrer JE, Ebrahim AM, Questell-santiago Y, et al. Role of bifunctional Ru/acid catalysts in the selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons. ACS Catal 2022;12:13969-79.
66. Peng Y, Wang X, Wang C, Bi W, Jiang Q, Tian Z. Boosting catalytic performance via electron transfer effect for hydroisomerization on a low-Pt-content PtCeOX/zeolite catalyst. Chem Catal 2023;3:100505.
67. Shi Y, Xing E, Wu K, Wang J, Yang M, Wu Y. Recent progress on upgrading of bio-oil to hydrocarbons over metal/zeolite bifunctional catalysts. Catal Sci Technol 2017;7:2385-415.
68. Luo W, Cao W, Bruijnincx PCA, Lin L, Wang A, Zhang T. Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules. Green Chem 2019;21:3744-68.
69. Liu S, Kots PA, Vance BC, Danielson A, Vlachos DG. Plastic waste to fuels by hydrocracking at mild conditions. Sci Adv 2021;7:eabf8283.
70. Lee W, Bobbink FD, van Muyden AP, et al. Catalytic hydrocracking of synthetic polymers into grid-compatible gas streams. Cell Rep Phys Sci 2021;2:100332.
71. Manal AK, Shanbhag GV, Srivastava R. Design of a bifunctional catalyst by alloying Ni with Ru-supported H-beta for selective hydrodeoxygenation of bisphenol A and polycarbonate plastic waste. Appl Catal B Environ 2023;338:123021.
72. Liu J, Wei J, Feng X, et al. Ni/HZSM-5 catalysts for hydrodeoxygenation of polycarbonate plastic wastes into cycloalkanes for sustainable aviation fuels. Appl Catal B Environ 2023;338:123050.
73. Nasution F, Husin H, Mahidin, et al. Conversion of pyrolysis vapors derived from non-biodegradable waste plastics (PET) into valuable fuels using nickel-impregnated HZSM5-70 catalysts. Energy Convers Manag 2022;273:116440.
74. Eze WU, Madufor IC, Onyeagoro GN, Obasi HC, Ugbaja MI. Study on the effect of Kankara zeolite-Y-based catalyst on the chemical properties of liquid fuel from mixed waste plastics (MWPs) pyrolysis. Polym Bull 2021;78:377-98.
75. Zhang F, Zeng M, Yappert RD, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 2020;370:437-41.
76. Wang G, Zhu X, Li C. Recent progress in commercial and novel catalysts for catalytic dehydrogenation of light alkanes. Chem Rec 2020;20:604-16.
77. Perego C, Ingallina P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 2002;73:3-22.
78. Tian X, Zeng Z, Liu Z, et al. Conversion of low-density polyethylene into monocyclic aromatic hydrocarbons by catalytic pyrolysis: Comparison of HZSM-5, Hβ, HY and MCM-41. J Clean Prod 2022;358:131989.
79. Dai L, Zhou N, Lv Y, et al. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog Energy Combust Sci 2022;93:101021.
80. Vichaphund S, Aht-ong D, Sricharoenchaikul V, Atong D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renew Energy 2015;79:28-37.
81. Zhou S, Li P, Pan H, Zhang Y. Improvement of aromatics selectivity from catalytic pyrolysis of low-density polyethylene with metal-modified HZSM-5 in a CO2 atmosphere. Ind Eng Chem Res 2022;61:11407-16.
82. Qian K, Tian W, Yin L, Yang Z, Tian F, Chen D. Aromatic production from high-density polyethylene over zinc promoted HZSM-5. Appl Catal B Environ 2023;339:123159.
83. Duan J, Wang H, Li H, et al. Selective conversion of polyethylene wastes to methylated aromatics through cascade catalysis. EES Catal 2023;1:529-38.
84. Marquez C, Martin C, Linares N, De Vos D. Catalytic routes towards polystyrene recycling. Mater Horiz 2023;10:1625-40.
85. Wang J, Jiang J, Sun Y, et al. Recycling benzene and ethylbenzene from in-situ catalytic fast pyrolysis of plastic wastes. Energy Convers Manag 2019;200:112088.
86. Serrano DP, Aguado J, Escola JM. Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2-Al2O3: comparison with thermal cracking. Appl Catal B Environ 2000;25:181-9.
87. Ojha DK, Vinu R. Resource recovery via catalytic fast pyrolysis of polystyrene using zeolites. J Anal Appl Pyrol 2015;113:349-59.
88. Coates GW, Getzler YDYL. Chemical recycling to monomer for an ideal, circular polymer economy. Nat Rev Mater 2020;5:501-16.
89. Vollmer I, Jenks MJF, Roelands MCP, et al. Beyond mechanical recycling: giving new life to plastic waste. Angew Chem Int Ed Engl 2020;59:15402-23.
90. Hou Q, Zhen M, Qian H, et al. Upcycling and catalytic degradation of plastic wastes. Cell Rep Phys Sci 2021;2:100514.
91. Tournier V, Topham CM, Gilles A, et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 2020;580:216-9.
92. Rorrer NA, Nicholson S, Carpenter A, Biddy MJ, Grundl NJ, Beckham GT. Combining reclaimed PET with bio-based monomers enables plastics upcycling. Joule 2019;3:1006-27.
93. Kang MJ, Yu HJ, Jegal J, Kim HS, Cha HG. Depolymerization of PET into terephthalic acid in neutral media catalyzed by the ZSM-5 acidic catalyst. Chem Eng J 2020;398:125655.
94. Du J, Sun Q, Zeng X, Wang D, Wang J, Chen J. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem Eng Sci 2020;220:115642.
95. Mancini SD, Zanin M. Post Consumer pet depolymerization by acid hydrolysis. Polym Plast Technol Eng 2007;46:135-44.
96. Wang C, Xu N, Liu T, et al. Mechanical pressure-mediated Pd active sites formation in NaY zeolite catalysts for indirect oxidative carbonylation of methanol to dimethyl carbonate. J Catal 2021;396:269-80.
97. Tang S, Li F, Liu J, Guo B, Tian Z, Lv J. MgO/NaY as modified mesoporous catalyst for methanolysis of polyethylene terephthalate wastes. J Environ Chem Eng 2022;10:107927.
98. Guo B, Liu J, Tang S, Liu Y, Tian Z, Lv J. Hydrolysis of dimethyl terephthalate to terephthalic acid on Nb-modified HZSM-5 zeolite catalysts. J Chem Tech Biotech 2022;97:1695-704.
99. Wei Y, Liu Z, Wang G, et al. Production of light olefins and aromatic hydrocarbons through catalytic cracking of naphtha at lowered temperature. Stud Surf Sci Catal 2005;158:1223-30.
100. Eschenbacher A, Goodarzi F, Varghese RJ, et al. Boron-modified mesoporous ZSM-5 for the conversion of pyrolysis vapors from LDPE and mixed polyolefins: maximizing the C2-C4 olefin yield with minimal carbon footprint. ACS Sustainable Chem Eng 2021;9:14618-30.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.