1. Guan X, Chen F, Fang Q, Qiu S. Design and applications of three dimensional covalent organic frameworks. Chem Soc Rev 2020;49:1357-84.
2. El-Kaderi HM, Hunt JR, Mendoza-Cortés JL, et al. Designed synthesis of 3D covalent organic frameworks. Science 2007;316:268-72.
3. Guan X, Fang Q, Yan Y, Qiu S. Functional regulation and stability engineering of three-dimensional covalent organic frameworks. Acc Chem Res 2022;55:1912-27.
4. Fang Q, Ma S. Covalent organic frameworks. Macromol Rapid Commun 2023;44:e2300203.
5. Guan X, Chen F, Qiu S, Fang Q. Three-dimensional covalent organic frameworks: from synthesis to applications. Angew Chem Int Ed Engl 2023;62:e202213203.
6. Yusran Y, Guan X, Li H, Fang Q, Qiu S. Postsynthetic functionalization of covalent organic frameworks. Natl Sci Rev 2020;7:170-90.
7. Yusran Y, Fang Q, Qiu S. Postsynthetic covalent modification in covalent organic frameworks. Isr J Chem 2018;58:971-84.
8. Nguyen HL. Reticular design and crystal structure determination of covalent organic frameworks. Chem Sci 2021;12:8632-47.
9. Gropp C, Canossa S, Wuttke S, et al. Standard practices of reticular chemistry. ACS Cent Sci 2020;6:1255-73.
10. Lyu H, Ji Z, Wuttke S, Yaghi OM. Digital reticular chemistry. Chem 2020;6:2219-41.
11. Fang Q, Gu S, Zheng J, Zhuang Z, Qiu S, Yan Y. 3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. Angew Chem Int Ed Engl 2014;53:2878-82.
12. Evans AM, Ryder MR, Ji W, et al. Trends in the thermal stability of two-dimensional covalent organic frameworks. Faraday Discuss 2021;225:226-40.
13. Ma X, Scott TF. Approaches and challenges in the synthesis of three-dimensional covalent-organic frameworks. Commun Chem 2018;1:98.
14. Tran QN, Lee HJ, Tran N. Covalent organic frameworks: from structures to applications. Polymers 2023;15:1279.
15. Vardhan H, Nafady A, Al-Enizi AM, Ma S. Pore surface engineering of covalent organic frameworks: structural diversity and applications. Nanoscale 2019;11:21679-708.
16. Ma T, Li J, Niu J, et al. Observation of interpenetration isomerism in covalent organic frameworks. J Am Chem Soc 2018;140:6763-6.
17. Garai B, Shetty D, Skorjanc T, et al. Taming the topology of calix[4]arene-based 2D-covalent organic frameworks: interpenetrated vs noninterpenetrated frameworks and their selective removal of cationic dyes. J Am Chem Soc 2021;143:3407-15.
18. Li Y, Chen W, Xing G, Jiang D, Chen L. New synthetic strategies toward covalent organic frameworks. Chem Soc Rev 2020;49:2852-68.
19. Ding J, Guan X, Lv J, et al. Three-dimensional covalent organic frameworks with ultra-large pores for highly efficient photocatalysis. J Am Chem Soc 2023;145:3248-54.
20. Chang J, Chen F, Li H, et al. Three-dimensional covalent organic frameworks with nia nets for efficient separation of benzene/cyclohexane mixtures. Nat Commun 2024;15:813.
21. Yahiaoui O, Fitch AN, Hoffmann F, Fröba M, Thomas A, Roeser J. 3D anionic silicate covalent organic framework with srs topology. J Am Chem Soc 2018;140:5330-3.
22. Nguyen HL, Gropp C, Ma Y, Zhu C, Yaghi OM. 3D covalent organic frameworks selectively crystallized through conformational design. J Am Chem Soc 2020;142:20335-9.
23. Xu X, Cai P, Chen H, Zhou HC, Huang N. Three-dimensional covalent organic frameworks with she topology. J Am Chem Soc 2022;144:18511-7.
24. Lan Y, Han X, Tong M, et al. Materials genomics methods for high-throughput construction of COFs and targeted synthesis. Nat Commun 2018;9:5274.
25. Kang X, Han X, Yuan C, Cheng C, Liu Y, Cui Y. Reticular synthesis of tbo topology covalent organic frameworks. J Am Chem Soc 2020;142:16346-56.
26. Zhu D, Zhu Y, Chen Y, et al. Three-dimensional covalent organic frameworks with pto and mhq-z topologies based on Tri- and tetratopic linkers. Nat Commun 2023;14:2865.
27. Wang X, Bahri M, Fu Z, et al. A cubic 3D covalent organic framework with nbo topology. J Am Chem Soc 2021;143:15011-6.
28. Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. A crystalline imine-linked 3-D porous covalent organic framework. J Am Chem Soc 2009;131:4570-1.
29. Lin G, Ding H, Yuan D, Wang B, Wang C. A pyrene-based, fluorescent three-dimensional covalent organic framework. J Am Chem Soc 2016;138:3302-5.
30. Liu Y, Li J, Lv J, et al. Topological isomerism in three-dimensional covalent organic frameworks. J Am Chem Soc 2023;145:9679-85.
31. Ma T, Kapustin EA, Yin SX, et al. Single-crystal x-ray diffraction structures of covalent organic frameworks. Science 2018;361:48-52.
32. Xie Y, Li J, Lin C, et al. Tuning the topology of three-dimensional covalent organic frameworks via steric control: from pts to unprecedented ljh. J Am Chem Soc 2021;143:7279-84.
33. Li H, Ding J, Guan X, et al. Three-dimensional large-pore covalent organic framework with stp topology. J Am Chem Soc 2020;142:13334-8.
34. Li H, Chen F, Guan X, et al. Three-dimensional triptycene-based covalent organic frameworks with ceq or acs topology. J Am Chem Soc 2021;143:2654-9.
35. Li Z, Sheng L, Wang H, et al. Three-dimensional covalent organic framework with ceq topology. J Am Chem Soc 2021;143:92-6.
36. Yu C, Li H, Wang Y, et al. Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption. Angew Chem Int Ed Engl 2022;61:e202117101.
37. Gropp C, Ma T, Hanikel N, Yaghi OM. Design of higher valency in covalent organic frameworks. Science 2020;370:eabd6406.
38. Shan Z, Wu M, Zhu D, et al. 3D covalent organic frameworks with interpenetrated pcb topology based on 8-connected cubic nodes. J Am Chem Soc 2022;144:5728-33.
39. Liu W, Wang K, Zhan X, et al. Highly connected three-dimensional covalent organic framework with flu topology for high-performance Li-S batteries. J Am Chem Soc 2023;145:8141-9.
40. Jin F, Lin E, Wang T, et al. Rationally fabricating 3D porphyrinic covalent organic frameworks with scu topology as highly efficient photocatalysts. Chem 2022;8:3064-80.
41. Wu M, Shan Z, Wang J, Liu T, Zhang G. Three-dimensional covalent organic framework with tty topology for enhanced photocatalytic hydrogen peroxide production. Chem Eng J 2023;454:140121.
42. Zhang Y, Duan J, Ma D, et al. Three-dimensional anionic cyclodextrin-based covalent organic frameworks. Angew Chem Int Ed Engl 2017;56:16313-7.
43. Martínez-Abadía M, Strutyński K, Lerma-Berlanga B, et al. π-interpenetrated 3D covalent organic frameworks from distorted polycyclic aromatic hydrocarbons. Angew Chem Int Ed Engl 2021;60:9941-6.
44. Lu HS, Han WK, Yan X, Chen CJ, Niu T, Gu ZG. A 3D anionic metal covalent organic framework with soc topology built from an octahedral Ti(IV) complex for photocatalytic reactions. Angew Chem Int Ed Engl 2021;60:17881-6.
45. Lyle SJ, Waller PJ, Yaghi OM. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem 2019;1:172-84.
46. Hunt JR, Doonan CJ, LeVangie JD, Côté AP, Yaghi OM. Reticular synthesis of covalent organic borosilicate frameworks. J Am Chem Soc 2008;130:11872-3.
47. Stewart D, Antypov D, Dyer MS, et al. Stable and ordered amide frameworks synthesised under reversible conditions which facilitate error checking. Nat Commun 2017;8:1102.
48. Fang Q, Wang J, Gu S, et al. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J Am Chem Soc 2015;137:8352-5.
49. Sun R, Wang X, Wang X, Tan B. Three-dimensional crystalline covalent triazine frameworks via a polycondensation approach. Angew Chem Int Ed Engl 2022;61:e202117668.
50. Beaudoin D, Maris T, Wuest JD. Constructing monocrystalline covalent organic networks by polymerization. Nat Chem 2013;5:830-4.
51. Wang S, Li XX, Da L, et al. A three-dimensional sp2 carbon-conjugated covalent organic framework. J Am Chem Soc 2021;143:15562-6.
52. Zhu Y, Long H, Zhang W. Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem Mater 2013;25:1630-5.
53. Hu J, Huang Z, Liu Y. Beyond solvothermal: alternative synthetic methods for covalent organic frameworks. Angew Chem Int Ed Engl 2023;62:e202306999.
54. Guan X, Ma Y, Li H, et al. Fast, ambient temperature and pressure ionothermal synthesis of three-dimensional covalent organic frameworks. J Am Chem Soc 2018;140:4494-8.
55. Kappe CO. Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed Engl 2004;43:6250-84.
56. Estel L, Poux M, Benamara N, Polaert I. Continuous flow-microwave reactor: where are we? Chem Eng Process 2017;113:56-64.
57. Campbell NL, Clowes R, Ritchie LK, Cooper AI. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem Mater 2009;21:204-6.
58. Khan NA, Jhung SH. Synthesis of metal-organic frameworks (MOFs) with microwave or ultrasound: rapid reaction, phase-selectivity, and size reduction. Coord Chem Rev 2015;285:11-23.
59. Gogate PR, Sutkar VS, Pandit AB. Sonochemical reactors: important design and scale up considerations with a special emphasis on heterogeneous systems. Chem Eng J 2011;166:1066-82.
60. Zhao W, Yan P, Yang H, et al. Using sound to synthesize covalent organic frameworks in water. Nat Synth 2022;1:87-95.
61. He J, Jiang X, Xu F, et al. Low power, low temperature and atmospheric pressure plasma-induced polymerization: facile synthesis and crystal regulation of covalent organic frameworks. Angew Chem Int Ed Engl 2021;60:9984-9.
62. Zhang YB, Su J, Furukawa H, et al. Single-crystal structure of a covalent organic framework. J Am Chem Soc 2013;135:16336-9.
63. Evans AM, Castano I, Brumberg A, et al. Emissive single-crystalline boroxine-linked colloidal covalent organic frameworks. J Am Chem Soc 2019;141:19728-35.
64. Peng L, Sun J, Huang J, et al. Ultra-fast synthesis of single-crystalline three-dimensional covalent organic frameworks and their applications in polarized optics. Chem Mater 2022;34:2886-95.
65. Lu H, Wang C, Chen J, et al. A novel 3D covalent organic framework membrane grown on a porous α-Al2O3 substrate under solvothermal conditions. Chem Commun 2015;51:15562-5.
66. Fu J, Das S, Xing G, Ben T, Valtchev V, Qiu S. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J Am Chem Soc 2016;138:7673-80.
67. Yang Y, Chen Y, Izquierdo-Ruiz F, Schäfer C, Rahm M, Börjesson K. A self-standing three-dimensional covalent organic framework film. Nat Commun 2023;14:220.
68. Huang J, Han X, Yang S, et al. Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene. J Am Chem Soc 2019;141:8996-9003.
69. Bunck DN, Dichtel WR. Internal functionalization of three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2012;51:1885-9.
70. Xu L, Zhou X, Tian WQ, et al. Surface-confined single-layer covalent organic framework on single-layer graphene grown on copper foil. Angew Chem Int Ed Engl 2014;53:9564-8.
71. Tao R, Ma X, Wei X, Jin Y, Qiu L, Zhang W. Porous organic polymer material supported palladium nanoparticles. J Mater Chem A 2020;8:17360-91.
72. Zeng Y, Zou R, Zhao Y. Covalent organic frameworks for CO2 Capture. Adv Mater 2016;28:2855-73.
73. Guo X, Qiao Z, Liu D, Zhong C. Mixed-matrix membranes for CO2 separation: role of the third component. J Mater Chem A 2019;7:24738-59.
74. Furukawa H, Yaghi OM. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J Am Chem Soc 2009;131:8875-83.
75. Li H, Pan Q, Ma Y, et al. Three-dimensional covalent organic frameworks with dual linkages for bifunctional cascade catalysis. J Am Chem Soc 2016;138:14783-8.
76. Li Z, Li H, Guan X, et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange. J Am Chem Soc 2017;139:17771-4.
77. Guan P, Qiu J, Zhao Y, et al. A novel crystalline azine-linked three-dimensional covalent organic framework for CO2 capture and conversion. Chem Commun 2019;55:12459-62.
78. Zhu Q, Wang X, Clowes R, et al. 3D cage COFs: a dynamic three-dimensional covalent organic framework with high-connectivity organic cage nodes. J Am Chem Soc 2020;142:16842-8.
79. Kumar G, Singh M, Goswami R, Neogi S. Structural dynamism-actuated reversible CO2 adsorption switch and postmetalation-induced visible light Cα-H photocyanation with rare size selectivity in N-functionalized 3D covalent organic framework. ACS Appl Mater Interfaces 2020;12:48642-53.
80. Gao C, Li J, Yin S, et al. Isostructural three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2019;58:9770-5.
81. Zhang L, Wang D, Cong M, et al. Construction of rigid amine-linked three-dimensional covalent organic frameworks for selectively capturing carbon dioxide. Chem Commun 2023;59:4911-4.
82. Song J, Wang Z, Liu Y, et al. A three-dimensional covalent organic framework for CO2 uptake and dyes adsorption. Chem Res Chin Univ 2022;38:834-7.
83. Reardon H, Hanlon JM, Hughes RW, Godula-jopek A, Mandal TK, Gregory DH. Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design. Energy Environ Sci 2012;5:5951-79.
84. Zhu L, Zhang YB. Crystallization of covalent organic frameworks for gas storage applications. Molecules 2017;22:1149.
85. Chen Z, Kirlikovali KO, Idrees KB, Wasson MC, Farha OK. Porous materials for hydrogen storage. Chem 2022;8:693-716.
86. Nemiwal M, Sharma V, Kumar D. Improved designs of multifunctional covalent-organic frameworks: hydrogen storage, methane storage, and water harvesting. MROC 2021;18:1026-36.
87. Kalidindi SB, Oh H, Hirscher M, et al. Metal@COFs: covalent organic frameworks as templates for Pd nanoparticles and hydrogen storage properties of Pd@COF-102 hybrid material. Chem 2012;18:10848-56.
88. Li Z, Sheng L, Hsueh C, et al. Three-dimensional covalent organic frameworks with hea topology. Chem Mater 2021;33:9618-23.
89. Liao L, Guan X, Zheng H, et al. Three-dimensional microporous and mesoporous covalent organic frameworks based on cubic building units. Chem Sci 2022;13:9305-9.
90. Alahakoon SB, Thompson CM, Occhialini G, Smaldone RA. Design principles for covalent organic frameworks in energy storage applications. ChemSusChem 2017;10:2116-29.
91. Chang F, Zhou J, Chen P, et al. Microporous and mesoporous materials for gas storage and separation: a review. Asia Pacific J Chem Eng 2013;8:618-26.
92. Feng X, Ding X, Jiang D. Covalent organic frameworks. Chem Soc Rev 2012;41:6010-22.
93. Ma H, Ren H, Meng S, et al. A 3D microporous covalent organic framework with exceedingly high C3H8/CH4 and C2 hydrocarbon/CH4 selectivity. Chem Commun 2013;49:9773-5.
94. Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. J Hazard Mater 2023;458:131835.
95. Skorjanc T, Shetty D, Trabolsi A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 2021;7:882-918.
96. Yang Y, Tu C, Yin H, Liu J, Cheng F, Luo F. Molecular iodine capture by covalent organic frameworks. Molecules 2022;27:9045.
97. Wang C, Wang Y, Ge R, et al. A 3D covalent organic framework with exceptionally high iodine capture capability. Chem 2018;24:585-9.
98. Wang G, Xie K, Zhu F, et al. Construction of tetrathiafulvalene-based covalent organic frameworks for superior iodine capture. Chem Res Chin Univ 2022;38:409-14.
99. Chang J, Li H, Zhao J, et al. Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture. Chem Sci 2021;12:8452-7.
100. Liu T, Zhao Y, Song M, et al. Ordered macro-microporous single crystals of covalent organic frameworks with efficient sorption of iodine. J Am Chem Soc 2023;145:2544-52.
101. Zou J, Wen D, Zhao Y. Flexible three-dimensional diacetylene functionalized covalent organic frameworks for efficient iodine capture. Dalton Trans 2023;52:731-6.
102. Wu C, Xia L, Xia S, Van der Bruggen B, Zhao Y. Advanced covalent organic framework-based membranes for recovery of ionic resources. Small 2023;19:2206041.
103. Yu J, Yuan L, Wang S, et al. Phosphonate-decorated covalent organic frameworks for actinide extraction: a breakthrough under highly acidic conditions. CCS Chem 2019;1:286-95.
104. Cao S, Li B, Zhu R, Pang H. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 2019;355:602-23.
105. Huang L, Liu R, Yang J, et al. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions. Chem Eng J 2021;408:127991.
106. Zhang CR, Cui WR, Xu RH, et al. Alkynyl-based sp2 carbon-conjugated covalent organic frameworks with enhanced uranium extraction from seawater by photoinduced multiple effects. CCS Chem 2021;3:168-79.
107. Cui W, Chen Y, Xu W, et al. A three-dimensional luminescent covalent organic framework for rapid, selective, and reversible uranium detection and extraction. Sep Purif Technol 2023;306:122726.
108. Zhang C, Qi J, Cui W, et al. A novel 3D sp2 carbon-linked covalent organic framework as a platform for efficient electro-extraction of uranium. Sci China Chem 2023;66:562-9.
109. Chen Y, Wang X, Xu W, et al. Constructing redox-active 3D covalent organic frameworks with high-affinity hexameric binding sites for enhanced uranium capture. Chem Eng J 2023;459:141633.
110. Liu Y, Pang H, Wang X, et al. Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: a review. Chem Eng J 2021;406:127139.
111. Liu M, Kong H, Bi S, et al. Non-interpenetrated 3D covalent organic framework with dia topology for Au ions capture. Adv Funct Mater 2023;33:2302637.
112. Nandanwar SU, Coldsnow K, Utgikar V, Sabharwall P, Eric Aston D. Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment - a review. Chem Eng J 2016;306:369-81.
113. Zhang CR, Cui WR, Yi SM, et al. An ionic vinylene-linked three-dimensional covalent organic framework for selective and efficient trapping of ReO4- or 99TcO4-. Nat Commun 2022;13:7621.
114. Wang Y, Lan J, Yang X, et al. Superhydrophobic phosphonium modified robust 3D covalent organic framework for preferential trapping of charge dispersed oxoanionic pollutants. Adv Funct Mater 2022;32:2205222.
115. Li B, Chen J, Xiao J, Zhao L, Qiu H. Nanoporous sulfonic covalent organic frameworks for selective adsorption and separation of lanthanide elements. ACS Appl Nano Mater 2023;6:2498-506.
116. Lu Q, Ma Y, Li H, et al. Postsynthetic functionalization of three-dimensional covalent organic frameworks for selective extraction of lanthanide ions. Angew Chem Int Ed Engl 2018;57:6042-8.
117. Wang L, Liu J, Wang J, Huang J. Bifunctional thiophene-based covalent organic frameworks for Hg2+ removal and I2 vapor adsorption. Chem Eng J 2023;473:145405.
118. Zhang Y, Li H, Chang J, et al. 3D thioether-based covalent organic frameworks for selective and efficient mercury removal. Small 2021;17:2006112.
119. Gendy EA, Oyekunle DT, Ifthikar J, Jawad A, Chen Z. A review on the adsorption mechanism of different organic contaminants by covalent organic framework (COF) from the aquatic environment. Environ Sci Pollut Res Int 2022;29:32566-93.
120. Moroni M, Roldan-Molina E, Vismara R, Galli S, Navarro JAR. Impact of pore flexibility in imine-linked covalent organic frameworks on benzene and cyclohexane adsorption. ACS Appl Mater Interfaces 2022;14:40890-901.
121. Li Z, Hsueh C, Tang Z, et al. Rational design of imine-linked three-dimensional mesoporous covalent organic frameworks with bor topology. SusMat 2022;2:197-205.
122. Mohammed AK, Ali JK, Kuzhimully MBS, et al. The fragmented 3D-covalent organic framework in cellulose acetate membrane for efficient phenol removal. Chem Eng J 2023;466:143234.
123. Lu F, Lin J, Lin C, Qi G, Lin X, Xie Z. Heteroporous 3D covalent organic framework-based magnetic nanospheres for sensitive detection of bisphenol A. Talanta 2021;231:122343.
124. Lu F, Wu M, Lin C, Lin X, Xie Z. Efficient and selective solid-phase microextraction of polychlorinated biphenyls by using a three-dimensional covalent organic framework as functional coating. J Chromatogr A 2022;1681:463419.
125. Li W, Xue Y, Fu X, Ma Z, Feng J. Covalent organic framework reinforced hollow fiber for solid-phase microextraction and determination of pesticides in foods. Food Control 2022;133:108587.
126. Walker G, Weatherley L. Adsorption of dyes from aqueous solution - the effect of adsorbent pore size distribution and dye aggregation. Chem Eng J 2001;83:201-6.
127. Liu Y, Ma Y, Yang J, et al. Molecular weaving of covalent organic frameworks for adaptive guest inclusion. J Am Chem Soc 2018;140:16015-9.
128. Esrafili A, Wagner A, Inamdar S, Acharya AP. Covalent organic frameworks for biomedical applications. Adv Healthc Mater 2021;10:e2002090.
129. Liao L, Zhang Z, Guan X, et al. Three-dimensional sp2 carbon-linked covalent organic frameworks as a drug carrier combined with fluorescence imaging. Chin J Chem 2022;40:2081-8.
130. Das S, Sekine T, Mabuchi H, et al. Three-dimensional covalent organic framework with scu-c topology for drug delivery. ACS Appl Mater Interfaces 2022;14:48045-51.
131. Zhao Y, Das S, Sekine T, et al. Record ultralarge-pores, low density three-dimensional covalent organic framework for controlled drug delivery. Angew Chem Int Ed Engl 2023;62:e202300172.
132. Wan X, Yin J, Yan Q, et al. Sustained-release nanocapsule based on a 3D COF for long-term enzyme prodrug therapy of cancer. Chem Commun 2022;58:5877-80.
133. Cheng Y, Zhai L, Ying Y, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers. J Mater Chem A 2019;7:4549-60.
134. Li B, Wang Z, Gao Z, et al. Self-standing covalent organic framework membranes for H2/CO2 separation. Adv Funct Mater 2023;33:2300219.
135. Ji C, Su K, Wang W, et al. Tunable cage-based three-dimensional covalent organic frameworks. CCS Chem 2022;4:3095-105.
136. Yang J, André L, Desbois N, Gros C, Brandès S. 2D/3D covalent organic frameworks based on cobalt corroles for CO binding. Mater Today Chem 2023;28:101357.
137. Fu J, Ben T. Fabrication of a novel covalent organic framework membrane and its gas separation performance. Acta Chim Sinica 2020;78:805-14.
138. Yang Y, Goh K, Weerachanchai P, Bae T. 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging. J Membrane Sci 2019;574:235-42.
139. Gao C, Li J, Yin S, Sun J, Wang C. Redox-triggered switching in three-dimensional covalent organic frameworks. Nat Commun 2020;11:4919.
140. Gui B, Liu X, Cheng Y, et al. Tailoring the pore surface of 3D covalent organic frameworks via post-synthetic click chemistry. Angew Chem Int Ed Engl 2022;61:e202113852.
141. Wu Y, Weckhuysen BM. Separation and purification of hydrocarbons with porous materials. Angew Chem Int Ed Engl 2021;60:18930-49.
142. Baldwin LA, Crowe JW, Pyles DA, McGrier PL. Metalation of a mesoporous three-dimensional covalent organic framework. J Am Chem Soc 2016;138:15134-7.
143. Jin F, Lin E, Wang T, et al. Bottom-up synthesis of 8-connected three-dimensional covalent organic frameworks for highly efficient ethylene/ethane separation. J Am Chem Soc 2022;144:5643-52.
144. Gong C, Wang H, Sheng G, et al. Synthesis and visualization of entangled 3D covalent organic frameworks with high-valency stereoscopic molecular nodes for gas separation. Angew Chem Int Ed Engl 2022;61:e202204899.
145. Li J, Zhou X, Wang J, Li X. Two-dimensional covalent organic frameworks (COFs) for membrane separation: a mini review. Ind Eng Chem Res 2019;58:15394-406.
146. Ying Y, Yang Y, Ying W, Peng X. Two-dimensional materials for novel liquid separation membranes. Nanotechnology 2016;27:332001.
147. Shi X, Zhang Z, Yin C, et al. Design of three-dimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration. Angew Chem Int Ed Engl 2022;61:e202207559.
148. Mohammed AK, Al Khoori AA, Addicoat MA, et al. Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching. Angew Chem Int Ed Engl 2022;61:e202200905.
149. Ma Y, Wang Y, Li H, et al. Three-dimensional chemically stable covalent organic frameworks through hydrophobic engineering. Angew Chem Int Ed Engl 2020;59:19633-8.
150. Ahmed I, Jhung SH. Covalent organic framework-based materials: synthesis, modification, and application in environmental remediation. Coord Chem Rev 2021;441:213989.
151. Wang X, Shi B, Yang H, et al. Assembling covalent organic framework membranes with superior ion exchange capacity. Nat Commun 2022;13:1020.
152. Sun W, Zhang L, Xiang Y, Ye N. Preliminary exploration of the dye/salt separation performance of 2D and 3D covalent organic frameworks/nylon 6 membranes prepared by layer-by-layer strategy. Chem Eng Res Des 2023;193:759-67.
153. Shi X, Zhang Z, Fang S, Wang J, Zhang Y, Wang Y. Flexible and robust three-dimensional covalent organic framework membranes for precise separations under extreme conditions. Nano Lett 2021;21:8355-62.
154. Shi X, Zhang Z, Wei M, et al. Three-dimensional covalent organic framework membranes: synthesis by oligomer interfacial ripening and application in precise separations. Macromolecules 2022;55:3259-66.
155. Lu Y, Zhang H, Zhu Y, Marriott PJ, Wang H. Emerging homochiral porous materials for enantiomer separation. Adv Funct Mater 2021;31:2101335.
156. Han X, Huang J, Yuan C, Liu Y, Cui Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 2018;140:892-5.
157. Holcroft JM, Hartlieb KJ, Moghadam PZ, et al. Carbohydrate-mediated purification of petrochemicals. J Am Chem Soc 2015;137:5706-19.
158. Qian HL, Yang C, Yan XP. Layer-by-layer preparation of 3D covalent organic framework/silica composites for chromatographic separation of position isomers. Chem Commun 2018;54:11765-8.
159. Qian HL, Wang ZH, Yang J, Yan XP. Building-block exchange synthesis of amino-based three-dimensional covalent organic frameworks for gas chromatographic separation of isomers. Chem Commun 2022;58:8133-6.
160. Du ML, Yang C, Qian HL, Yan XP. Hydroxyl-functionalized three-dimensional covalent organic framework for selective and rapid extraction of organophosphorus pesticides. J Chromatogr A 2022;1673:463071.
161. Liu X, Yang C, Qian H, Yan X. Three-dimensional nanoporous covalent organic framework-incorporated monolithic columns for high-performance liquid chromatography. ACS Appl Nano Mater 2021;4:5437-43.
162. Wang ZH, Yang C, Liu T, Qian HL, Yan XP. Particle size regulation of single-crystalline covalent organic frameworks for high performance of gas chromatography. Anal Chem 2023;95:8145-9.
163. Zong R, Wang X, Yin H, et al. Capillary coated with three-dimensional covalent organic frameworks for separation of fluoroquinolones by open-tubular capillary electrochromatography. J Chromatogr A 2021;1656:462549.
164. Yin H, Zhen Z, Ning W, Zhang L, Xiang Y, Ye N. Three-dimensional fluorinated covalent organic frameworks coated capillary for the separation of fluoroquinolones by capillary electrochromatography. J Chromatogr A 2023;1706:464234.
165. Niu X, Lv W, Sun Y, Dai H, Chen H, Chen X. In situ fabrication of 3D COF-300 in a capillary for separation of aromatic compounds by open-tubular capillary electrochromatography. Mikrochim Acta 2020;187:233.
166. Guo J, Jiang D. Covalent organic frameworks for heterogeneous catalysis: principle, current status, and challenges. ACS Cent Sci 2020;6:869-79.
167. Zhi Y, Wang Z, Zhang HL, Zhang Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 2020;16:2001070.
168. Zhang H, Lou LL, Yu K, Liu S. Advances in chiral metal-organic and covalent organic frameworks for asymmetric catalysis. Small 2021;17:e2005686.
169. Xiao J, Liu X, Pan L, Shi C, Zhang X, Zou J. Heterogeneous photocatalytic organic transformation reactions using conjugated polymers-based materials. ACS Catal 2020;10:12256-83.
170. Chen F, Guan X, Li H, et al. Three-dimensional radical covalent organic frameworks as highly efficient and stable catalysts for selective oxidation of alcohols. Angew Chem Int Ed Engl 2021;60:22230-5.
171. Yan S, Guan X, Li H, et al. Three-dimensional salphen-based covalent-organic frameworks as catalytic antioxidants. J Am Chem Soc 2019;141:2920-4.
172. Song J, Yu C, Liu Y, et al. An FeSx doped three-dimensional covalent organic framework for degradation of dyes. Mater Chem Front 2023;7:1431-6.
173. Haque N, Biswas S, Ghosh S, Chowdhury AH, Khan A, Islam SM. Zn(II)-embedded nanoporous covalent organic frameworks for catalytic conversion of CO2 under solvent-free conditions. ACS Appl Nano Mater 2021;4:7663-74.
174. Liu Y, Wu C, Sun Q, et al. Spirobifluorene-based three-dimensional covalent organic frameworks with rigid topological channels as efficient heterogeneous catalyst. CCS Chem 2021;3:2418-27.
175. Sun Q, Wu C, Pan Q, et al. Three-dimensional covalent-organic frameworks loaded with highly dispersed ultrafine palladium nanoparticles as efficient heterogeneous catalyst. ChemNanoMat 2021;7:95-9.
176. Hou B, Yang S, Yang K, et al. Confinement-driven enantioselectivity in 3D porous chiral covalent organic frameworks. Angew Chem Int Ed Engl 2021;60:6086-93.
177. Huang J, Tao Y, Ran S, et al. A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. New J Chem 2022;46:17153-60.
178. Jin P, Niu X, Gao Z, et al. Ultrafine platinum nanoparticles supported on covalent organic frameworks as stable and reusable oxidase-like catalysts for cellular glutathione detection. ACS Appl Nano Mater 2021;4:5834-41.
179. Ma YX, Li ZJ, Wei L, Ding SY, Zhang YB, Wang W. A dynamic three-dimensional covalent organic framework. J Am Chem Soc 2017;139:4995-8.
180. Gao W, Sun X, Niu H, et al. Phosphomolybdic acid functionalized covalent organic frameworks: structure characterization and catalytic properties in olefin epoxidation. Micropor Mesopor Mater 2015;213:59-67.
181. He T, Zhao Y. Covalent organic frameworks for energy conversion in photocatalysis. Angew Chem Int Ed Engl 2023;62:e202303086.
182. Meng Y, Luo Y, Shi JL, et al. 2D and 3D porphyrinic covalent organic frameworks: the influence of dimensionality on functionality. Angew Chem Int Ed Engl 2020;59:3624-9.
183. Chao J, Wang Z, Liu H, et al. A photo- and redox actives mesoporous 3D covalent organic framework enables highly efficient metal-free photoredox catalysis. J Catal 2022;413:692-702.
184. Wang XL, Sun YY, Xiao Y, Chen XX, Huang XC, Zhou HL. Facile solution-refluxing synthesis and photocatalytic dye degradation of a dynamic covalent organic framework. Molecules 2022;27:8002.
185. Yu TY, Niu Q, Chen Y, et al. Interpenetrating 3D covalent organic framework for selective stilbene photoisomerization and photocyclization. J Am Chem Soc 2023;145:8860-70.
186. Lu M, Zhang SB, Yang MY, et al. Dual photosensitizer coupled three-dimensional metal-covalent organic frameworks for efficient photocatalytic reactions. Angew Chem Int Ed Engl 2023;62:e202307632.
187. Dong P, Xu X, Luo R, Yuan S, Zhou J, Lei J. Postsynthetic annulation of three-dimensional covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc 2023;145:15473-81.
188. Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. 3D porphyrin-based covalent organic frameworks. J Am Chem Soc 2017;139:8705-9.
189. Hynek J, Zelenka J, Rathouský J, et al. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl Mater Interfaces 2018;10:8527-35.
190. Zhang X, Wang S, Tang K, et al. Cu2+ embedded three-dimensional covalent organic framework for multiple ROS-based cancer immunotherapy. ACS Appl Mater Interfaces 2022;14:30618-25.
191. Yan D, Lin E, Jin F, et al. Engineering COFs as smart triggers for rapid capture and controlled release of singlet oxygen. J Mater Chem A 2021;9:27434-41.
192. Zhang L, Yang LL, Wan SC, et al. Three-dimensional covalent organic frameworks with cross-linked pores for efficient cancer immunotherapy. Nano Lett 2021;21:7979-88.
193. Kim J, Kim H, Han GH, et al. Electrodeposition: an efficient method to fabricate self-supported electrodes for electrochemical energy conversion systems. Exploration 2022;2:20210077.
194. Li D, Li C, Zhang L, et al. Metal-free thiophene-sulfur covalent organic frameworks: precise and controllable synthesis of catalytic active sites for oxygen reduction. J Am Chem Soc 2020;142:8104-8.
195. Liu J, Zhao J, Li C, et al. Precise modulation of carbon activity sites in metal-free covalent organic frameworks for enhanced oxygen reduction electrocatalysis. Small 2024;20:2305759.
196. Li J, Jia J, Suo J, et al. Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. J Mater Chem A 2023;11:18349-55.
197. Chang J, Li C, Wang X, et al. Quasi-three-dimensional cyclotriphosphazene-based covalent organic framework nanosheet for efficient oxygen reduction. Nanomicro Lett 2023;15:159.
198. Wang R, Zhang Z, Suo J, et al. Exploring metal-free ionic covalent organic framework nanosheets as efficient OER electrocatalysts via cationic-π interactions. Chem Eng J 2023;478:147403.
199. Liu Y, Yan X, Li T, et al. Three-dimensional porphyrin-based covalent organic frameworks with tetrahedral building blocks for single-site catalysis. New J Chem 2019;43:16907-14.
200. Gong C, Yang X, Wei X, et al. Three-dimensional porphyrin-based covalent organic frameworks with stp topology for an efficient electrocatalytic oxygen evolution reaction. Mater Chem Front 2023;7:230-7.
201. Meng H, Wu B, Sun T, et al. Oxidization-induced structural optimization of Ni3Fe-N-C derived from 3D covalent organic framework for high-efficiency and durable oxygen evolution reaction. Nano Res 2023;16:6710-20.
202. Tavakoli E, Kakekhani A, Kaviani S, et al. In situ bottom-up synthesis of porphyrin-based covalent organic frameworks. J Am Chem Soc 2019;141:19560-4.
203. Zhou M, Liu M, Miao Q, Shui H, Xu Q. Synergetic Pt atoms and nanoparticles anchored in standing carbon-derived from covalent organic frameworks for catalyzing ORR. Adv Materials Inter 2022;9:2201263.
204. Li J, Liu P, Mao J, Yan J, Song W. Revealing the structure-activity relationship in woven covalent organic frameworks for the electrocatalytic oxygen reduction reaction. Nanoscale 2022;14:6126-32.
205. Bao R, Xiang Z, Qiao Z, et al. Designing thiophene-enriched fully conjugated 3D covalent organic framework as metal-free oxygen reduction catalyst for hydrogen fuel cells. Angew Chem Int Ed Engl 2023;62:e202216751.
206. Chi S, Chen Q, Zhao S, et al. Three-dimensional porphyrinic covalent organic frameworks for highly efficient electroreduction of carbon dioxide. J Mater Chem A 2022;10:4653-9.
207. Han B, Jin Y, Chen B, et al. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis. Angew Chem Int Ed Engl 2022;61:e202114244.
208. Yusran Y, Fang Q, Valtchev V. Electroactive covalent organic frameworks: design, synthesis, and applications. Adv Mater 2020;32:e2002038.
209. Li H, Chang J, Li S, et al. Three-dimensional tetrathiafulvalene-based covalent organic frameworks for tunable electrical conductivity. J Am Chem Soc 2019;141:13324-9.
210. Li R, Xing G, Li H, Li S, Chen L. A three-dimensional polycyclic aromatic hydrocarbon based covalent organic framework doped with iodine for electrical conduction. Chinese Chem Lett 2023;34:107454.
211. Wang S, Da L, Hao J, et al. A fully conjugated 3D covalent organic framework exhibiting band-like transport with ultrahigh electron mobility. Angew Chem Int Ed Engl 2021;60:9321-5.
212. Yang Y, Mallick S, Izquierdo-Ruiz F, et al. A highly conductive all-carbon linked 3D covalent organic framework film. Small 2021;17:2103152.
213. Zhao X, Chen Y, Wang Z, Zhang Z. Design and application of covalent organic frameworks for ionic conduction. Polym Chem 2021;12:4874-94.
214. Wang S, Li X, Cheng T, et al. Highly conjugated three-dimensional covalent organic frameworks with enhanced Li-ion conductivity as solid-state electrolytes for high-performance lithium metal batteries. J Mater Chem A 2022;10:8761-71.
215. Wu M, Huang H, Xu B, Zhang G. Poly(ethylene glycol)-functionalized 3D covalent organic frameworks as solid-state polyelectrolytes. RSC Adv 2022;12:16354-7.
216. Fan C, Geng H, Wu H, et al. Three-dimensional covalent organic framework membrane for efficient proton conduction. J Mater Chem A 2021;9:17720-3.
217. Yu X, Li C, Chang J, et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks. Angew Chem Int Ed Engl 2022;61:e202200820.
218. Sun J, Xu Y, Lv Y, Zhang Q, Zhou X. Recent advances in covalent organic framework electrode materials for alkali metal-ion batteries. CCS Chem 2023;5:1259-76.
219. Yu X, Li C, Ma Y, et al. Crystalline, porous, covalent polyoxometalate-organic frameworks for lithium-ion batteries. Micropor Mesopor Mater 2020;299:110105.
220. Schon TB, Tilley AJ, Kynaston EL, Seferos DS. Three-dimensional arylene diimide frameworks for highly stable lithium ion batteries. ACS Appl Mater Interfaces 2017;9:15631-7.
221. Chen R, Zhao J, Yu Z, et al. Post-synthetic fully π-conjugated three-dimensional covalent organic frameworks for high-performance lithium storage. ACS Appl Mater Interfaces 2023;15:830-7.
222. Wang Y, Li M, Wen T, Gu G. A 3D COF constructed by interlayer crosslinking of 2D COF as cathode material for lithium-sulfur batteries. Nanotechnology 2023;34:375402.
223. Li Z, Zhou H, Zhao F, et al. Three-dimensional covalent organic frameworks as host materials for lithium-sulfur batteries. Chin J Polym Sci 2020;38:550-7.
224. Liu W, Gong L, Liu Z, et al. Conjugated three-dimensional high-connected covalent organic frameworks for lithium-sulfur batteries. J Am Chem Soc 2022;144:17209-18.
225. Wu K, Shi X, Yu F, et al. Molecularly engineered three-dimensional covalent organic framework protection films for highly stable zinc anodes in aqueous electrolyte. Energy Storage Mater 2022;51:391-9.
226. Wu C, Liu Y, Liu H, et al. Highly conjugated three-dimensional covalent organic frameworks based on spirobifluorene for perovskite solar cell enhancement. J Am Chem Soc 2018;140:10016-24.
227. Biradar MR, Rao CRK, Bhosale SV, Bhosale SV. Flame-retardant 3D covalent organic framework for high-performance symmetric supercapacitors. Energy Fuels 2023;37:4671-81.
228. Chen S, Zhu C, Xian W, et al. Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting. J Am Chem Soc 2021;143:9415-22.
229. Liu Y, Ren J, Wang Y, et al. A stable luminescent covalent organic framework nanosheet for sensitive molecular recognition. CCS Chem 2023;5:2033-45.
230. Skorjanc T, Shetty D, Valant M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens 2021;6:1461-81.
231. Ding H, Li J, Xie G, et al. An AIEgen-based 3D covalent organic framework for white light-emitting diodes. Nat Commun 2018;9:5234.
232. Cheng Y, Xin J, Xiao L, et al. A fluorescent three-dimensional covalent organic framework formed by the entanglement of two-dimensional sheets. J Am Chem Soc 2023;145:18737-41.
233. Yuan Y, Ren H, Sun F, et al. Targeted synthesis of a 3D crystalline porous aromatic framework with luminescence quenching ability for hazardous and explosive molecules. J Phys Chem C 2012;116:26431-5.
234. Li WK, Ren P, Zhou YW, Feng JT, Ma ZQ. Europium(III) functionalized 3D covalent organic framework for quinones adsorption and sensing investigation. J Hazard Mater 2020;388:121740.
235. Wu M, Shan Z, Wang J, et al. Three-dimensional covalent organic frameworks based on a π-conjugated tetrahedral node. Chem Commun 2021;57:10379-82.
236. Wang L, Chen Y, Zhang Z, Chen Y, Deng Q, Wang S. Bipyridine-linked three-dimensional covalent organic frameworks for fluorescence sensing of cobalt(II) at nanomole level. Mikrochim Acta 2021;188:167.
237. Wei L, Sun T, Shi Z, et al. Guest-adaptive molecular sensing in a dynamic 3D covalent organic framework. Nat Commun 2022;13:7936.
238. Chi H, Wang L, Wang S, Liu G. An electrochemiluminescence sensor based on CsPbBr3 -zquantum dots and poly (3-thiophene acetic acid) cross-linked nanogold imprinted layer for the determination of benzo(a)pyrene in edible oils. Food Chem 2023;426:136508.
239. Zhao W, Yu C, Zhao J, et al. 3D hydrazone-functionalized covalent organic frameworks as pH-triggered rotary switches. Small 2021;17:2102630.
240. Fang J, Fu Z, Chen X, et al. Piezochromism in dynamic three-dimensional covalent organic frameworks. Angew Chem Int Ed Engl 2023;62:e202304234.
241. Liu X, Li J, Gui B, et al. A crystalline three-dimensional covalent organic framework with flexible building blocks. J Am Chem Soc 2021;143:2123-9.
242. Dong X, Yang J, Wang H, et al. Synthesis of thin film of a three-dimensional covalent organic framework as anti-counterfeiting label. Chin J Chem 2022;40:1171-6.
243. Bourda L, Kaczmarek AM, Peng M, et al. Turning 3D covalent organic frameworks into luminescent ratiometric temperature sensors. ACS Appl Mater Interfaces 2023;15:37696-705.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.