REFERENCES

1. Sundberg RJ. The chemistry of indoles. New York: Academic Press; 1996.

2. Ryan KS, Drennan CL. Divergent pathways in the biosynthesis of bisindole natural products. Chem Biol 2009;16:351-64.

3. Kochanowska-Karamyan AJ, Hamann MT. Marine indole alkaloids: potential new drug leads for the control of depression and anxiety. Chem Rev 2010;110:4489-97.

4. Ishikura M, Abe T, Choshi T, Hibino S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat Prod Rep 2013;30:694-752.

5. Zhang YC, Jiang F, Shi F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc Chem Res 2020;53:425-46.

6. Sheng F, Wang J, Tan W, Zhang Y, Shi F. Progresses in organocatalytic asymmetric dearomatization reactions of indole derivatives. Org Chem Front 2020;7:3967-98.

7. Tu M, Chen K, Wu P, Zhang Y, Liu X, Shi F. Advances in organocatalytic asymmetric reactions of vinylindoles: powerful access to enantioenriched indole derivatives. Org Chem Front 2021;8:2643-72.

8. Zhang HH, Shi F. Organocatalytic atroposelective synthesis of indole derivatives bearing axial chirality: strategies and applications. Acc Chem Res 2022;55:2562-80.

9. Bergman J, Venemalm L. Total synthesis of yuehchukene. Tetrahedron Lett 1988;29:2993-4.

10. Scarpi D, Faggi C, Occhiato EG. Total synthesis of bruceolline I. J Nat Prod 2017;80:2384-8.

11. Park A, Moore RE, Patterson GM. Fischerindole L, a new isonitrile from the terrestrial blue-green alga fischerella muscicola. Tetrahedron Lett 1992;33:3257-60.

12. Rundberget T, Wilkins AL. Thomitrems A and E, two indole-alkaloid isoprenoids from penicillium crustosum thom. Phytochemistry 2002;61:979-85.

13. Nicoll-Griffith DA, Seto C, Aubin Y, et al. In vitro biotransformations of the prostaglandin D2 (DP) antagonist MK-0524 and synthesis of metabolites. Bioorg Med Chem Lett 2007;17:301-4.

14. Tan W, Li X, Gong YX, Ge MD, Shi F. Highly diastereo- and enantioselective construction of a spiro[cyclopenta[b]indole-1,3'-oxindole] scaffold via catalytic asymmetric formal [3+2] cycloadditions. Chem Commun 2014;50:15901-4.

15. Shi F, Zhang HH, Sun XX, Liang J, Fan T, Tu SJ. Organocatalytic asymmetric cascade reactions of 7-vinylindoles: diastereo- and enantioselective synthesis of C7-functionalized indoles. Chem Eur J 2015;21:3465-71.

16. Gandhi S, Baire B. Unusual formation of cyclopenta[b]indoles from 3-indolylmethanols and alkynes. J Org Chem 2019;84:3904-18.

17. Selvaraj K, Debnath S, Swamy KCK. Reaction of indole carboxylic acid/amide with propargyl alcohols: [4+3]-annulation, unexpected 3- to 2- carboxylate/amide migration, and decarboxylative cyclization. Org Lett 2019;21:5447-51.

18. Yadav S, Hazra R, Singh A, Ramasastry SSV. Substituent-guided palladium-ene reaction for the synthesis of carbazoles and cyclopenta[b]indoles. Org Lett 2019;21:2983-7.

19. Agy AC, Rodrigues Jr. MT, Zeoly LA, Simoni DA, Coelho F. Palladium-mediated oxidative annulation of δ-indolyl-α,β-unsaturated compounds toward the synthesis of cyclopenta[b]indoles and heterogeneous hydrogenation to access fused indolines. J Org Chem 2019;84:5564-81.

20. Yu KY, Ge XM, Fan YJ, et al. Iron(III)-catalyzed tandem annulation of indolyl-substituted p-quinone methides with ynamides for the synthesis of cyclopenta[b]indoles. Chem Commun 2022;58:8710-3.

21. Duan S, Zhang W, Hu Y, Xu ZF, Li CY. Synthesis of cyclopenta[b]indoles via a formal [3+2] cyclization of N-sulfonyl-1,2,3-triazoles and indoles. Adv Synth Catal 2020;362:3570-5.

22. Jadhav SD, Singh T, Singh A. Brønsted acid promoted C-C bond formation between indolylmethyl electrophiles and ketene dithioacetals: diastereoselective synthesis of highly functionalized cyclopenta[b]indoles. Tetrahedron Lett 2020;61:152349.

23. Mao J, Zhang H, Ding XF, Luo X, Deng WP. Synergistic catalysis for asymmetric [3+2] cycloadditions of 2-indolylmethanols with α, β-unsaturated aldehydes. J Org Chem 2019;84:11186-94.

24. Tian F, Yang W, Ni T, Zhang J, Deng W. Catalytic asymmetric dipolar cycloadditions of indolyl delocalized metal-allyl species for the enantioselective synthesis of cyclopenta[b]indoles and pyrrolo[1,2-a]indoles. Sci China Chem 2021;64:34-40.

25. Gao JG, Guan XK, Sun DY, et al. Enantioselective domino reaction of 3-vinylindole and p-quinone methides enabled by chiral imidodiphosphoric acids: asymmetric synthesis of multisubstituted 3-indolyl cyclopenta[b]indoles. Org Lett 2021;23:4876-81.

26. Fan T, Zhang H, Li C, Shen Y, Shi F. The application of N-protected 3-vinylindoles in chiral phosphoric acid-catalyzed [3+2] cyclization with 3-indolylmethanols: monoactivation of the catalyst to vinyliminium. Adv Synth Catal 2016;358:2017-31.

27. Zhang H, Zhu Z, Fan T, Liang J, Shi F. Intermediate-dependent unusual [4+3], [3+2] and cascade reactions of 3-indolylmethanols: controllable chemodivergent and stereoselective synthesis of diverse indole derivatives. Adv Synth Catal 2016;358:1259-88.

28. Zhu Z, Shen Y, Sun X, Tao J, Liu J, Shi F. Catalytic asymmetric [3+2] cycloadditions of C-3 unsubstituted 2-indolylmethanols: regio-, diastereo- and enantioselective construction of the cyclopenta[b]indole framework. Adv Synth Catal 2016;358:3797-808.

29. Xu MM, Wang HQ, Wan Y, Wang SL, Shi F. Enantioselective construction of cyclopenta[b]indoles scaffolds via the catalytic asymmetric [3+2] cycloaddition of 2-indolylmethanols with p-hydroxystyrenes. J Org Chem 2017;82:10226-33.

30. Vaidya T, Eisenberg R, Frontier AJ. Catalytic Nazarov cyclization: the state of the art. ChemCatChem 2011;3:1531-48.

31. Shimada N, Stewart C, Tius MA. Asymmetric Nazarov cyclizations. Tetrahedron 2011;67:5851-70.

32. Tius MA. Allene ether Nazarov cyclization. Chem Soc Rev 2014;43:2979-3002.

33. Grandi MJ. Nazarov-like cyclization reactions. Org Biomol Chem 2014;12:5331-45.

34. Wenz DR, Read de Alaniz J. The Nazarov cyclization: a valuable method to synthesize fully substituted carbon stereocenters: Nazarov cyclization. Eur J Org Chem 2015;2015:23-37.

35. Simeonov SP, Nunes JP, Guerra K, Kurteva VB, Afonso CA. Synthesis of chiral cyclopentenones. Chem Rev 2016;116:5744-893.

36. Vinogradov MG, Turova OV, Zlotin SG. Nazarov reaction: current trends and recent advances in the synthesis of natural compounds and their analogs. Org Biomol Chem 2017;15:8245-69.

37. Malona JA, Colbourne JM, Frontier AJ. A general method for the catalytic Nazarov cyclization of heteroaromatic compounds. Org Lett 2006;8:5661-4.

38. Davies J, Leonori D. The first calcium-catalysed Nazarov cyclisation. Chem Commun 2014;50:15171-4.

39. Raja S, Nakajima M, Rueping M. Experimental and computational study of the catalytic asymmetric 4π-electrocyclization of N-heterocycles. Angew Chem Int Ed Engl 2015;54:2762-5.

40. Wang GP, Chen MQ, Zhu SF, Zhou QL. Enantioselective Nazarov cyclization of indole enones cooperatively catalyzed by Lewis acids and chiral Brønsted acids. Chem Sci 2017;8:7197-202.

41. Rinaldi A, Petrović M, Magnolfi S, Scarpi D, Occhiato EG. Pentannulation reaction by tandem gold(I)-catalyzed propargyl Claisen rearrangement/Nazarov cyclization of enynyl vinyl ethers. Org Lett 2018;20:4713-7.

42. Dhiman S, Ramasastry SS. One-pot relay gold(I) and brønsted acid catalysis: cyclopenta[b]annulation of indoles via hydroamination/Nazarov-type cyclization cascade of enynols. Org Lett 2015;17:5116-9.

43. Wang Z, Xu X, Gu Z, et al. Nazarov cyclization of 1,4-pentadien-3-ols: preparation of cyclopenta[b]indoles and spiro[indene-1,4'-quinoline]s. Chem Commun 2016;52:2811-4.

44. Scarpi D, Petrović M, Fiser B, Gómez-Bengoa E, Occhiato EG. Construction of Cyclopenta[b]indol-1-ones by a tandem gold(I)-catalyzed rearrangement/Nazarov reaction and application to the synthesis of bruceolline H. Org Lett 2016;18:3922-5.

45. Wang C, Wu J, Li C, Li L, Mei G, Shi F. Design of C3-alkenyl-substituted 2-indolylmethanols for catalytic asymmetric interrupted Nazarov-type cyclization. Adv Synth Catal 2018;360:846-51.

46. Wu JL, Wang JY, Wu P, Wang JR, Mei GJ, Shi F. Diastereo- and enantioselective construction of chiral cyclopenta[b]indole framework via a catalytic asymmetric tandem cyclization of 2-indolymethanols with 2-naphthols. Org Chem Front 2018;5:1436-45.

47. Wang JY, Wu P, Wu JL, Mei GJ, Shi F. Chemodivergent tandem cyclizations of 2-indolylmethanols with tryptophols: C-N versus C-C bond formation. J Org Chem 2018;83:5931-46.

48. Rueping M, Ieawsuwan W, Antonchick AP, Nachtsheim BJ. Chiral Brønsted acids in the catalytic asymmetric Nazarov cyclization--the first enantioselective organocatalytic electrocyclic reaction. Angew Chem Int Ed Engl 2007;46:2097-100.

49. Rueping M, Ieawsuwan W. A catalytic asymmetric electrocyclization-protonation reaction. Adv Synth Catal 2009;351:78-84.

50. Basak AK, Shimada N, Bow WF, Vicic DA, Tius MA. An organocatalytic asymmetric Nazarov cyclization. J Am Chem Soc 2010;132:8266-7.

51. Jolit A, Walleser PM, Yap GP, Tius MA. Catalytic enantioselective Nazarov cyclization: construction of vicinal all-carbon-atom quaternary stereocenters. Angew Chem Int Ed Engl 2014;53:6180-3.

52. Yang BM, Cai PJ, Tu YQ, et al. Organocatalytic asymmetric tandem Nazarov cyclization/semipinacol rearrangement: rapid construction of chiral spiro[4.4]nonane-1,6-diones. J Am Chem Soc 2015;137:8344-7.

53. Süsse L, Vogler M, Mewald M, Kemper B, Irran E, Oestreich M. Enantioselective Nazarov cyclizations catalyzed by an axial chiral C6F5 -substituted boron Lewis acid. Angew Chem Int Ed Engl 2018;57:11441-4.

54. Ouyang J, Kennemur JL, De CK, Farès C, List B. Strong and confined acids enable a catalytic asymmetric Nazarov cyclization of simple divinyl ketones. J Am Chem Soc 2019;141:3414-8.

55. Cao J, Hu MY, Liu SY, Zhang XY, Zhu SF, Zhou QL. Enantioselective silicon-directed Nazarov cyclization. J Am Chem Soc 2021;143:6962-8.

56. Cao J, Zhu S. Chiral proton-transfer shuttle catalysts promoted enantio­selective Nazarov cyclization. Synlett 2023;34:29-39.

57. Houk KN, List B. Asymmetric organocatalysis. Acc Chem Res 2004;37:487-487.

58. MacMillan DW. The advent and development of organocatalysis. Nature 2008;455:304-8.

59. Wang T, Han X, Zhong F, Yao W, Lu Y. Amino acid-derived bifunctional phosphines for enantioselective transformations. Acc Chem Res 2016;49:1369-78.

60. Zong L, Tan CH. Phase-transfer and ion-pairing catalysis of pentanidiums and bisguanidiniums. Acc Chem Res 2017;50:842-56.

61. Ni H, Chan WL, Lu Y. Phosphine-catalyzed asymmetric organic reactions. Chem Rev 2018;118:9344-411.

62. Metrano AJ, Miller SJ. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc Chem Res 2019;52:199-215.

63. Tan W, Zhang JY, Gao CH, Shi F. Progress in organocatalytic asymmetric (4+3) cycloadditions for the enantioselective construction of seven-membered rings. Sci China Chem 2023;Epub ahead of print.

64. Mei GJ, Shi F. Indolylmethanols as reactants in catalytic asymmetric reactions. J Org Chem 2017;82:7695-707.

65. Petrini M. New perspectives in the indole ring functionalization using 2-indolylmethanols. Adv Synth Catal 2020;362:1214-32.

66. Zhang H, Shi F. Advances in catalytic asymmetric reactions using 2-indolylmethanols as platform molecules. Chinese J Org Chem 2022;42:3351.

67. Tan W, Shi F. A breakthrough in 2-indolylmethanol-involved organocatalytic asymmetric reactions. Chem Synth 2022;2:11.

68. Bera K, Schneider C. Brønsted acid catalyzed [3+2]-cycloaddition of 2-vinylindoles with in situ generated 2-methide-2H-indoles: highly enantioselective synthesis of pyrrolo[1,2-a]indoles. Chem Eur J 2016;22:7074-8.

69. Göricke F, Schneider C. Palladium-catalyzed, enantioselective (3+2)-cycloannulation of β-Keto esters with alkylidene 2H-indoles toward complex indole-based heterocycles. Org Lett 2020;22:6101-6.

70. Li X, Duan M, Deng Z, et al. Catalytic enantioselective synthesis of chiral tetraarylmethanes. Nat Catal 2020;3:1010-9.

71. Li X, Sun J. Organocatalytic enantioselective synthesis of chiral allenes: remote asymmetric 1, 8-addition of indole imine methides. Angew Chem Int Ed Engl 2020;59:17049-54.

72. Li X, Duan M, Yu P, Houk KN, Sun J. Organocatalytic enantioselective dearomatization of thiophenes by 1, 10-conjugate addition of indole imine methides. Nat Commun 2021;12:4881.

73. Wang J, Sun M, Yu X, Zhang Y, Tan W, Shi F. Atroposelective construction of axially chiral alkene-indole scaffolds via catalytic enantioselective addition reaction of 3-alkynyl -2-indolylmethanols. Chin J Chem 2021;39:2163-71.

74. Wang C, Li T, Liu S, et al. Axially chiral aryl-alkene-indole framework: a nascent member of the atropisomeric family and its catalytic asymmetric construction. Chin J Chem 2020;38:543-52.

75. Zhang HH, Wang CS, Li C, Mei GJ, Li Y, Shi F. Design and enantioselective construction of axially chiral naphthyl-indole skeletons. Angew Chem Int Ed Engl 2017;56:116-21.

76. Wang Y, Yu P, Zhou Z, et al. Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nat Catal 2019;2:504-13.

77. Ding W, Yu P, An Q, et al. DFT-guided phosphoric-acid-catalyzed atroposelective arene functionalization of nitrosonaphthalene. Chem 2020;6:2046-59.

78. Li TZ, Liu SJ, Tan W, Shi F. Catalytic asymmetric construction of axially chiral indole-based frameworks: an emerging area. Chem Eur J 2020;26:15779-92.

79. Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent advances in catalytic asymmetric construction of atropisomers. Chem Rev 2021;121:4805-902.

80. Bai XF, Cui YM, Cao J, Xu LW. Atropisomers with axial and point chirality: synthesis and applications. Acc Chem Res 2022;55:2545-61.

81. Wang J, Zhao C, Wang J. Recent progress toward the construction of axially chiral molecules catalyzed by an N-heterocyclic carbene. ACS Catal 2021;11:12520-31.

82. Song R, Xie Y, Jin Z, Chi YR. Carbene-catalyzed asymmetric construction of atropisomers. Angew Chem Int Ed Engl 2021;60:26026-37.

83. Zhang Z, Zhai T, Ye L. Synthesis of axially chiral compounds through catalytic asymmetric reactions of alkynes. Chem Catalysis 2021;1:1378-412.

84. Liu CX, Zhang WW, Yin SY, Gu Q, You SL. Synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions. J Am Chem Soc 2021;143:14025-40.

85. Zhang X, Zhao K, Gu Z. Transition metal-catalyzed biaryl atropisomer synthesis via a torsional strain promoted ring-opening reaction. Acc Chem Res 2022;55:1620-33.

86. Qin W, Liu Y, Yan H. Enantioselective synthesis of atropisomers via vinylidene ortho-quinone methides (VQMs). Acc Chem Res 2022;55:2780-95.

87. Basilaia M, Chen MH, Secka J, Gustafson JL. Atropisomerism in the pharmaceutically relevant realm. Acc Chem Res 2022;55:2904-19.

88. Cheng JK, Xiang SH, Tan B. Organocatalytic enantioselective synthesis of axially chiral molecules: development of strategies and skeletons. Acc Chem Res 2022;55:2920-37.

89. Kumar A, Sasai H, Takizawa S. Atroposelective synthesis of C-C axially chiral compounds via mono- and dinuclear vanadium catalysis. Acc Chem Res 2022;55:2949-65.

90. Norton RS, Wells RJ. A series of chiral polybrominated biindoles from the marine blue-green alga Rivularia firma. Application of carbon-13 NMR spin-lattice relaxation data and carbon-13-proton coupling constants to structure elucidation. J Am Chem Soc 1982;104:3628-35.

91. Ito C, Thoyama Y, Omura M, Kajiura I, Furukawa H. Alkaloidal constituents of murraya koenigii. isolation and structural elucidation of novel binary carbazolequinones and carbazole alkaloids. Chem Pharm Bull 1993;41:2096-100.

92. Zhang Q, Mándi A, Li S, et al. N-N-coupled indolo-sesquiterpene atropo-diastereomers from a marine-derived actinomycete. Eur J Org Chem 2012;2012:5256-62.

93. Jiang F, Chen KW, Wu P, Zhang YC, Jiao Y, Shi F. A strategy for synthesizing axially chiral naphthyl-indoles: catalytic asymmetric addition reactions of racemic substrates. Angew Chem Int Ed Engl 2019;58:15104-10.

94. Chen KW, Chen ZH, Yang S, Wu SF, Zhang YC, Shi F. Organocatalytic atroposelective synthesis of N-N axially chiral indoles and pyrroles by de novo ring formation. Angew Chem Int Ed Engl 2022;61:e202116829.

95. Xia W, An QJ, Xiang SH, Li S, Wang YB, Tan B. Chiral phosphoric acid catalyzed atroposelective C-H amination of arenes. Angew Chem Int Ed Engl 2020;59:6775-9.

96. Baumann T, Brückner R. Atropselective dibrominations of a 1, 1'-disubstituted 2, 2'-biindolyl with diverging point-to-axial asymmetric inductions. Deriving 2, 2'-biindolyl-3, 3'-diphosphane ligands for asymmetric catalysis. Angew Chem Int Ed Engl 2019;58:4714-9.

97. He T, Peng L, Li S, et al. Chiral naphthyl-C2-indole as scaffold for phosphine organocatalysis: application in asymmetric formal [4+2] cycloaddition reactions. Org Lett 2020;22:6966-71.

98. Wang L, Zhong J, Lin X. Atroposelective phosphoric acid catalyzed three-component cascade reaction: enantioselective synthesis of axially chiral N-arylindoles. Angew Chem Int Ed Engl 2019;58:15824-8.

99. Ren Q, Cao T, He C, Yang M, Liu H, Wang L. Highly atroposelective rhodium(II)-catalyzed N-H bond insertion: access to axially chiral N-arylindolocarbazoles. ACS Catal 2021;11:6135-40.

100. Wang ZS, Zhu LJ, Li CT, Liu BY, Hong X, Ye LW. Synthesis of axially chiral N-arylindoles via atroposelective cyclization of ynamides catalyzed by chiral Brønsted acids. Angew Chem Int Ed Engl 2022;61:e202201436.

101. Yang H, Sun HR, He RQ, et al. Organocatalytic cycloaddition of alkynylindoles with azonaphthalenes for atroposelective construction of indole-based biaryls. Nat Commun 2022;13:632.

102. Ototake N, Morimoto Y, Mokuya A, Fukaya H, Shida Y, Kitagawa O. Catalytic enantioselective synthesis of atropisomeric indoles with an N-C chiral axis. Chem Eur J 2010;16:6752-5.

103. Zhang J, Xu Q, Wu J, Fan J, Xie M. Construction of N-C axial chirality through atroposelective C-H olefination of N-arylindoles by palladium/amino acid cooperative catalysis. Org Lett 2019;21:6361-5.

104. Sun L, Chen H, Liu B, et al. Rhodium-catalyzed atroposelective construction of indoles via C-H bond activation. Angew Chem Int Ed Engl 2021;60:8391-5.

105. Kim A, Kim A, Park S, et al. Catalytic and enantioselective control of the C-N stereogenic axis via the Pictet-Spengler reaction. Angew Chem Int Ed Engl 2021;60:12279-83.

106. Corti V, Thøgersen MK, Enemaerke VJ, Rezayee NM, Barløse CL, Anker Jørgensen K. Construction of C-N atropisomers by aminocatalytic enantioselective addition of indole-2-carboxaldehydes to o-quinone derivatives. Chem Eur J 2022;28:e202202395.

107. Li Y, Liou YC, Chen X, Ackermann L. Thioether-enabled palladium-catalyzed atroposelective C-H olefination for N-C and C-C axial chirality. Chem Sci 2022;13:4088-94.

108. Wang Y, Zhou X, Shan W, et al. Construction of axially chiral indoles by cycloaddition-isomerization via atroposelective phosphoric acid and silver sequential catalysis. ACS Catal 2022;12:8094-103.

109. Wang P, Huang Y, Jing J, Wang F, Li X. Rhodium(III)-catalyzed atroposelective synthesis of C-N axially chiral naphthylamines and variants via C-H activation. Org Lett 2022;24:2531-5.

110. Niu C, Zhou Y, Chen Q, et al. Atroposelective synthesis of N-arylindoles via enantioselective N-H bond insertion. Org Lett 2022;24:7428-33.

111. Qi LW, Mao JH, Zhang J, Tan B. Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nat Chem 2018;10:58-64.

112. Bisag GD, Pecorari D, Mazzanti A, et al. Central-to-axial chirality conversion approach designed on organocatalytic enantioselective povarov cycloadditions: first access to configurationally stable indole-quinoline atropisomers. Chem Eur J 2019;25:15694-701.

113. Mao JH, Wang YB, Yang L, et al. Organocatalyst-controlled site-selective arene C-H functionalization. Nat Chem 2021;13:982-91.

114. Xu WL, Zhao WM, Zhang RX, Chen J, Zhou L. Organocatalytic cycloaddition-elimination cascade for atroposelective construction of heterobiaryls. Chem Sci 2021;12:14920-6.

115. He C, Hou M, Zhu Z, Gu Z. Enantioselective synthesis of indole-based biaryl atropisomers via palladium-catalyzed dynamic kinetic intramolecular C-H cyclization. ACS Catal 2017;7:5316-20.

116. Xi CC, Zhao XJ, Tian JM, et al. Atroposelective synthesis of axially chiral 3-arylindoles by copper-catalyzed asymmetric cross-coupling of indoles with quinones and naphthoquinones. Org Lett 2020;22:4995-5000.

117. Shaaban S, Li H, Otte F, Strohmann C, Antonchick AP, Waldmann H. Enantioselective synthesis of five-membered-ring atropisomers with a chiral Rh(III) complex. Org Lett 2020;22:9199-202.

118. Li X, Zhao L, Qi Z, Li X. Construction of atropisomeric 3-arylindoles via enantioselective Cacchi reaction. Org Lett 2021;23:5901-5.

119. Wang CS, Wei L, Fu C, Wang XH, Wang CJ. Asymmetric synthesis of axially chiral naphthyl-C3-indoles via a palladium-catalyzed Cacchi reaction. Org Lett 2021;23:7401-6.

120. Surgenor RR, Liu X, Keenlyside MJH, Myers W, Smith MD. Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling. Nat Chem 2022; doi: 10.1038/s41557-022-01095-9.

121. Hu YL, Wang Z, Yang H, et al. Conversion of two stereocenters to one or two chiral axes: atroposelective synthesis of 2, 3-diarylbenzoindoles. Chem Sci 2019;10:6777-84.

122. Peng L, Li K, Xie C, et al. Organocatalytic asymmetric annulation of ortho-alkynylanilines: synthesis of axially chiral naphthyl-C2-indoles. Angew Chem Int Ed Engl 2019;58:17199-204.

123. He YP, Wu H, Wang Q, Zhu J. Palladium-catalyzed enantioselective Cacchi reaction: asymmetric synthesis of axially chiral 2, 3-disubstituted indoles. Angew Chem Int Ed Engl 2020;59:2105-9.

124. Xu D, Huang S, Hu F, et al. Diversity-oriented enantioselective construction of atropisomeric heterobiaryls and N-aryl indoles via vinylidene ortho-quinone methides. CCS Chem 2021;3:2680-91.

125. Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective construction of nine-membered carbonate-bridged biaryls. Angew Chem Int Ed Engl 2022;61:e202206501.

126. Yin SY, Pan C, Zhang WW, et al. SCpRh(III)-catalyzed enantioselective synthesis of atropisomers by C2-arylation of indoles with 1-diazonaphthoquinones. Org Lett 2022;24:3620-5.

127. Liu J, Li Q, Shao Y, Sun J. Atroposelective synthesis of axially chiral C2-arylindoles via rhodium-catalyzed asymmetric C-H bond insertion. Org Lett 2022;24:4670-4.

128. Zhu S, Chen YH, Wang YB, et al. Organocatalytic atroposelective construction of axially chiral arylquinones. Nat Commun 2019;10:4268.

129. Chen YH, Li HH, Zhang X, Xiang SH, Li S, Tan B. Organocatalytic enantioselective synthesis of atropisomeric aryl-p-quinones: platform molecules for diversity-oriented synthesis of biaryldiols. Angew Chem Int Ed Engl 2020;59:11374-8.

130. Hang Q, Wu S, Yang S, et al. Design and catalytic atroposelective synthesis of axially chiral isochromenone-indoles. Sci China Chem 2022;65:1929-37.

131. Ma C, Jiang F, Sheng FT, Jiao Y, Mei GJ, Shi F. Design and catalytic asymmetric construction of axially chiral 3, 3'-bisindole skeletons. Angew Chem Int Ed Engl 2019;58:3014-20.

132. Tian M, Bai D, Zheng G, Chang J, Li X. Rh(III)-catalyzed asymmetric synthesis of axially chiral biindolyls by merging C-H activation and nucleophilic cyclization. J Am Chem Soc 2019;141:9527-32.

133. Sheng F, Li Z, Zhang Y, et al. Atroposelective synthesis of 3, 3’-bisindoles bearing axial and central chirality: using isatin-derived imines as electrophiles. Chin J Chem 2020;38:583-9.

134. Chen KW, Wang ZS, Wu P, et al. Catalytic asymmetric synthesis of 3, 3'-bisindoles bearing single axial chirality. J Org Chem 2020;85:10152-66.

135. Sheng F, Yang S, Wu S, Zhang Y, Shi F. Catalytic asymmetric synthesis of axially chiral 3, 3'-bisindoles by direct coupling of indole rings. Chin J Chem 2022;40:2151-60.

136. He X, Zhao H, Song X, Jiang B, Du W, Chen Y. Asymmetric Barton-Zard reaction to access 3-pyrrole-containing axially chiral skeletons. ACS Catal 2019;9:4374-81.

137. Wu P, Yu L, Gao C, et al. Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2+3) cyclization. Fund Res 2023;Epub ahead of print.

138. Xia Y, Liu M, Qian C, Li P, Dong M, Li W. Asymmetric organocatalytic (3+2) annulation of propargylic alcohols with indolylnaphthalenols: synergistic construction of axial and central chirality. Org Chem Front 2022;10:30-4.

139. Wang F, Jing J, Zhao Y, et al. Rhodium-catalyzed C-H activation-based construction of axially and centrally chiral indenes through two discrete insertions. Angew Chem Int Ed Engl 2021;60:16628-33.

140. Mi R, Chen H, Zhou X, et al. Rhodium-catalyzed atroposelective access to axially chiral olefins via C-H bond activation and directing group migration. Angew Chem Int Ed Engl 2022;61:e202111860.

141. Qin J, Zhou T, Zhou TP, et al. Catalytic atroposelective electrophilic amination of indoles. Angew Chem Int Ed Engl 2022;61:e202205159.

142. Ji D, Jing J, Wang Y, et al. Palladium-catalyzed asymmetric hydrophosphination of internal alkynes: atroposelective access to phosphine-functionalized olefins. Chem 2022;8:3346-62.

143. Wang HQ, Wu SF, Yang JR, Zhang YC, Shi F. Design and organocatalytic asymmetric synthesis of indolyl-pyrroloindoles bearing both axial and central chirality. J Org Chem 2022;Online ahead of print.

144. Akiyama T. Stronger Brønsted acids. Chem Rev 2007;107:5744-58.

145. Terada M. Binaphthol-derived phosphoric acid as a versatile catalyst for enantioselective carbon-carbon bond forming reactions. Chem Commun 2008:4097-112.

146. Terada M. Chiral phosphoric acids as versatile catalysts for enantioselective transformations. Synthesis 2010;2010:1929-82.

147. Yu J, Shi F, Gong LZ. Brønsted-acid-catalyzed asymmetric multicomponent reactions for the facile synthesis of highly enantioenriched structurally diverse nitrogenous heterocycles. Acc Chem Res 2011;44:1156-71.

148. Parmar D, Sugiono E, Raja S, Rueping M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem Rev 2014;114:9047-153.

149. Xia ZL, Xu-Xu QF, Zheng C, You SL. Chiral phosphoric acid-catalyzed asymmetric dearomatization reactions. Chem Soc Rev 2020;49:286-300.

150. Li S, Xiang S, Tan B. Chiral phosphoric acid creates promising opportunities for enantioselective photoredox catalysis. Chin J Chem 2020;38:213-4.

151. Lin X, Wang L, Han Z, Chen Z. Chiral spirocyclic phosphoric acids and their growing applications. Chin J Chem 2021;39:802-24.

152. Cambridge Crystallographic Data Centre. CCDC 2227139 for (Sa)-3aa. Available from: https://www.ccdc.cam.ac.uk/.[Last accessed on 1 Feb 2023].

Chemical Synthesis
ISSN 2769-5247 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/