REFERENCES

1. Sarquella-Brugada G, Campuzano O, Arbelo E, Brugada J, Brugada R. Brugada syndrome: clinical and genetic findings. Genet Med 2016;18:3-12.

2. Nademanee K, Raju H, de Noronha SV, et al. Fibrosis, connexin-43, and conduction abnormalities in the brugada syndrome. J Am Coll Cardiol 2015;66:1976-86.

3. Pieroni M, Notarstefano P, Oliva A, et al. Electroanatomic and pathologic right ventricular outflow tract abnormalities in patients with brugada syndrome. J Am Coll Cardiol 2018;72:2747-57.

4. Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 2010;7:33-46.

5. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference: endorsed by the heart rhythm society and the European heart rhythm association. Circulation 2005;111:659-70.

6. Batchvarov VN. The brugada syndrome - diagnosis, clinical implications and risk stratification. Eur Cardiol 2014;9:82-7.

7. Poli S, Toniolo M, Maiani M, et al. Management of untreatable ventricular arrhythmias during pharmacologic challenges with sodium channel blockers for suspected Brugada syndrome. Europace 2018;20:234-42.

8. Conte G, Sieira J, Sarkozy A, et al. Life-threatening ventricular arrhythmias during ajmaline challenge in patients with Brugada syndrome: incidence, clinical features, and prognosis. Heart Rhythm 2013;10:1869-74.

9. Melo L, Ciconte G, Christy A, et al. Deep learning unmasks the ECG signature of Brugada syndrome. PNAS Nexus 2023;2:pgad327.

10. Liao S, Bokhari M, Chakraborty P, et al. Use of wearable technology and deep learning to improve the diagnosis of brugada syndrome. JACC Clin Electrophysiol 2022;8:1010-20.

11. Liu CM, Liu CL, Hu KW, et al. A deep learning-enabled electrocardiogram model for the identification of a rare inherited arrhythmia: brugada syndrome. Can J Cardiol 2022;38:152-9.

12. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLoS Med 2021;18:e1003583.

13. Campbell S, Kung J. Filter to retrieve studies related to artificial intelligence from the OVID EMBASE database. Available from: https://docs.google.com/document/d/1eWyO0jv9_6FYsxyC5LUYwFe9eH_3h83-tPNZ6wmos18/edit#heading=h.ldbxqb34y1kj [Last accessed on 5 Jun 2024].

14. Innovation VH. Covidence systematic review software. Available from: http://www.covidence.org [Last accessed on 5 Jun 2024]

15. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2 Group. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011;155:529-36.

16. Wolff RF, Moons KGM, Riley RD, et al. PROBAST Group. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 2019;170:51-8.

17. Doebler P, Holling H. Meta-analysis of diagnostic accuracy with mada. Available from: https://cran.r-project.org/web/packages/mada/vignettes/mada.pdf [Last accessed on 5 Jun 2024].

18. Lee S, Zhou J, Li KHC, et al. Territory-wide cohort study of brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation. Open Heart 2021;8:e001505.

19. Lee S, Zhou J, Chung CT, et al. Comparing the performance of published risk scores in brugada syndrome: a multi-center cohort study. Curr Probl Cardiol 2022;47:101381.

20. Randazzo V, Marchetti G, Giustetto C, et al. Learning-based approach to predict fatal events in brugada syndrome. In: Esposito A, Faundez-Zanuy M, Morabito FC, Pasero E, eds. Applications of Artificial Intelligence and Neural Systems to Data Science. Smart Innovation, Systems and Technologies. Springer Nature; 2023:63-72.

21. Tse G, Zhou J, Lee S, et al. Incorporating latent variables using nonnegative matrix factorization improves risk stratification in brugada syndrome. J Am Heart Assoc 2020;9:e012714.

22. Romero D, Calvo M, Behar N, Mabo P, Hernandez A. Ensemble classifier based on linear discriminant analysis for distinguishing Brugada syndrome patients according to symptomatology. Available from: https://ieeexplore.ieee.org/document/7868715 [Last accessed on 5 Jun 2024].

23. Romero D, Calvo M, Le Rolle V, Béhar N, Mabo P, Hernández A. Multivariate ensemble classification for the prediction of symptoms in patients with Brugada syndrome. Med Biol Eng Comput 2022;60:81-94.

24. Micheli A, Natali M, Pedrelli L, et al. Analysis and interpretation of ECG time series through convolutional neural networks in Brugada syndrome diagnosis. In: Iliadis L, Papaleonidas A, Angelov P, Jayne C, editors. Artificial Neural Networks and Machine Learning – ICANN 2023. Cham: Springer Nature Switzerland; 2023. pp. 26-36.

25. Zanchi B, Faraci FD, Gharaviri A, et al. Identification of Brugada syndrome based on P-wave features: an artificial intelligence-based approach. Europace 2023;25:euad334.

26. Nakamura T, Aiba T, Shimizu W, Furukawa T, Sasano T. Prediction of the presence of ventricular fibrillation from a Brugada electrocardiogram using artificial intelligence. Circ J 2023;87:1007-14.

27. Brugada J, Brugada R, Antzelevitch C, Towbin J, Nademanee K, Brugada P. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation 2002;105:73-8.

28. Kusano KF, Taniyama M, Nakamura K, et al. Atrial fibrillation in patients with Brugada syndrome relationships of gene mutation, electrophysiology, and clinical backgrounds. J Am Coll Cardiol 2008;51:1169-75.

29. Radford A, Kim JW, Hallacy C, et al. Learning transferable visual models from natural language supervision. Available from: https://arxiv.org/abs/2103.00020v1 [Last accessed on 5 Jun 2024].

30. Liu C, Cheng S, Chen C, et al. M-FLAG: medical vision-language pre-training with frozen language models and latent space geometry optimization. Available from: https://arxiv.org/abs/2307.08347 [Last accessed on 5 Jun 2024].

31. Zhang K, Yang Y, Yu J, et al. Multi-task paired masking with alignment modeling for medical vision-language pre-training. IEEE Trans Multimedia 2024;26:4706-21.

32. Rabkin SW. Evaluating the adverse outcome of subtypes of heart failure with preserved ejection fraction defined by machine learning: a systematic review focused on defining high risk phenogroups. EXCLI J 2022;21:487-518.

33. Yao X, McCoy RG, Friedman PA, et al. ECG AI-guided screening for low ejection fraction (EAGLE): rationale and design of a pragmatic cluster randomized trial. Am Heart J 2020;219:31-6.

34. Khurshid S, Friedman S, Reeder C, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation 2022;145:122-33.

35. Wu MJ, Wang WQ, Zhang W, Li JH, Zhang XW. The diagnostic value of electrocardiogram-based machine learning in long QT syndrome: a systematic review and meta-analysis. Front Cardiovasc Med 2023;10:1172451.

36. Monasky MM, Micaglio E, D'Imperio S, Pappone C. The mechanism of ajmaline and thus brugada syndrome: not only the sodium channel! Front Cardiovasc Med 2021;8:782596.

37. Priori SG, Wilde AA, Horie M, et al. Document Reviewers; Heart Rhythm Society; European Heart Rhythm Association; Asia Pacific Heart Rhythm Society. Executive summary: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Europace 2013;15:1389-406.

38. Sieira J, Conte G, Ciconte G, et al. A score model to predict risk of events in patients with brugada syndrome. Eur Heart J 2017;38:1756-63.

39. Siontis KC, Noseworthy PA, Attia ZI, Friedman PA. Artificial intelligence-enhanced electrocardiography in cardiovascular disease management. Nat Rev Cardiol 2021;18:465-78.

Connected Health And Telemedicine
ISSN 2993-2920 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/