REFERENCES
1. Huang, J.; Gopal, S. Green AI-a multidisciplinary approach to sustainability. Environ. Sci. Ecotechnol. 2025, 24, 100536.
2. Huang, L.; Chin, T.; Papa, A.; Pisano, P. Artificial intelligence augmenting human intelligence for manufacturing firms to create green value: Towards a technology adoption perspective. Technol. Forecast. Soc. Change. 2025, 213, 124013.
3. Zhong, K.; Song, L. Artificial intelligence adoption and corporate green innovation capability. Financ. Res. Lett. 2025, 72, 106480.
4. Li, B.; Jiang, F.; Xia, H.; Pan, J. Under the background of AI application, research on the impact of science and technology innovation and industrial structure upgrading on the sustainable and high-quality development of regional economies. Sustainability 2022, 14, 11331.
5. Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163-6.
6. Lange, S.; Pohl, J.; Santarius, T. Digitalization and energy consumption. Does ICT reduce energy demand? Ecol. Econ. 2020, 176, 106760.
7. Liu, Z.; Deng, Z.; He, G.; et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth. Environ. 2021, 3, 141-55.
8. Cheng, G.; Li, X.; Zhao, W.; et al. Integrated study of the water-ecosystem-economy in the Heihe River basin. Nat. Sci. Revi. 2014, 1, 413-28.
9. Yang, D.; Zhu, C.; Li, J.; et al. Exploring the supply and demand imbalance of carbon and carbon-related ecosystem services for dualcarbon goal ecological management in the Huaihe River Ecological Economic Belt. Sci. Total. Environ. 2024, 912, 169169.
10. Xu, J.; Jin, G.; Mo, Y.; Tang, H.; Li, L. Assessing anthropogenic impacts on chemical and biochemical oxygen demand in different spatial scales with Bayesian networks. Water 2020, 12, 246.
11. Zhang, C.; Wang, C.; Mao, G.; Wang, M.; Hsu, W. An empirical study on the ecological economy of the Huai River in China. Water 2020, 12, 2162.
12. Cheng, Y.; Zhang, D. Spatial and temporal differentiation trends and attributions of high-quality development in the Huaihe Eco-Economic Belt. J. Resour. Ecol. 2023, 14, 517-32.
13. Wang, C.; Wu, J.; Zhang, B. Environmental regulation, emissions and productivity: evidence from Chinese COD-emitting manufacturers. J. Environ. Econ. Manage. 2018, 92, 54-73.
14. Jalil, A.; Feridun, M. The impact of growth, energy and financial development on the environment in China: a cointegration analysis. Energy. Econ. 2011, 33, 284-91.
15. Libman, A. Natural resources and sub-national economic performance: DOEs sub-national democracy matter? Energy. Econ. 2013, 37, 82-99.
16. Ma, X.; Shahbaz, M.; Song, M. Off-office audit of natural resource assets and water pollution: a quasi-natural experiment in China. J. Enterp. Inf. Manag. 2025, 38, 292-317.
17. Liu, P.; Zhong, F.; Han, N. Efficiency and equity: effect of urban agglomerations’ spatial structure on green development efficiency in China. Sustain. Cities. Soc. 2024, 108, 105504.
19. Makridakis, S. The forthcoming artificial intelligence (AI) revolution: its impact on society and firms. Futures 2017, 90, 46-60.
20. Sarkar, M.; Sarkar, B. How does an industry reduce waste and consumed energy within a multi-stage smart sustainable biofuel production system? J. Clean. Prod. 2020, 262, 121200.
21. Wheeldon, A.; Shafik, R.; Rahman, T.; Lei, J.; Yakovlev, A.; Granmo, O. C. Learning automata based energy-efficient AI hardware design for IoT applications. Phil. Trans. R. Soc. A. 2020, 378, 20190593.
22. Liu, X.; Cifuentes-faura, J.; Yang, X.; Pan, J. The green innovation effect of industrial robot applications: evidence from Chinese manufacturing companies. Technol. Forecast. Social. Change. 2025, 210, 123904.
23. Bonfiglioli, A.; Crinò, R.; Gancia, G.; Papadakis, I. Artificial intelligence and jobs: evidence from US commuting zones. Economic. Policy. 2025, 40, 145-94.
24. Tariq, G.; Sun, H.; Ali, S. Environmental footprint impacts of green energies, green energy finance and green governance in G7 countries. Carbon. Footprints. 2024, 3, 5.
25. Li, X.; Wang, Q.; Tang, Y. The impact of artificial intelligence development on urban energy efficiency-based on the perspective of smart city policy. Sustainability 2024, 16, 3200.
26. Yin, K.; Cai, F.; Huang, C. How does artificial intelligence development affect green technology innovation in China? Environ. Sci. Pollut. Res. Int. 2023, 30, 28066-90.
27. Zhou, W.; Zhuang, Y.; Chen, Y. How does artificial intelligence affect pollutant emissions by improving energy efficiency and developing green technology. Energy. Economics. 2024, 131, 107355.
28. Li, Y.; Zhang, Y.; Pan, A.; Han, M.; Veglianti, E. Carbon emission reduction effects of industrial robot applications: heterogeneity characteristics and influencing mechanisms. Technol. Soc. 2022, 70, 102034.
29. Lin, J.; Zeng, Y.; Wu, S.; Luo, X. How does artificial intelligence affect the environmental performance of organizations? Inf. Manag. 2024, 61, 103924.
30. Wang, Q.; Sun, T.; Li, R. Does artificial intelligence promote green innovation? Energy. Environ. 2025, 36, 1005-37.
31. Chen, M.; Wang, S.; Wang, X. How does artificial intelligence impact green development? Sustainability 2024, 16, 1260.
32. Yigitcanlar, T.; Mehmood, R.; Corchado, J. M. Green artificial intelligence: towards an efficient, sustainable and equitable technology for smart cities and futures. Sustainability 2021, 13, 8952.
33. Lin, S.; Wang, M.; Jing, C.; et al. The influence of AI on the economic growth of different regions in China. Sci. Rep. 2024, 14, 9169.
34. Li, T.; Luo, J.; Liang, K.; Yi, C.; Ma, L. Synergy of patent and open-source-driven sustainable climate governance under green AI: a case study of TinyML. Sustainability 2023, 15, 13779.
35. Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does green innovation induce green total factor productivity? Technol. Forecast. Social. Change. 2022, 185, 122021.
36. Qian, Y.; Liu, J.; Shi, L.; Forrest, J. Y.; Yang, Z. Can artificial intelligence improve green economic growth? Environ. Sci. Pollut. Res. Int. 2023, 30, 16418-37.
37. Luan, F.; Yang, X.; Chen, Y.; Regis, P. J. Industrial robots and air environment: a moderated mediation model of population density and energy consumption. Sustain. Prod. Consum. 2022, 30, 870-88.
38. Vinuesa, R.; Azizpour, H.; Leite, I.; et al. The role of artificial intelligence in achieving the sustainable development goals. Nat. Commun. 2020, 11, 233.
39. Budde, M.; Hilbring, D.; Vogl, J.; Dittmar, D.; Abecker, A. NiMo 4.0 - enabling advanced data analytics with AI for environmental governance in the water domain. At. -. Autom. 2024, 72, 564-78.
40. Bera, M.; Das, S.; Garai, S.; et al. Advancing energy efficiency: innovative technologies and strategic measures for achieving net zero emissions. Carbon. Footprints. 2025, 4, 3.
41. Tang, R. Digital economy drives tourism development-empirical evidence based on the UK. Econ. Res. Ekon. Istraž. 2023, 36, 2003-20.
42. Wang, X.; Chen, M.; Chen, N. How artificial intelligence affects the labour force employment structure from the perspective of industrial structure optimisation. Heliyon 2024, 10, e26686.
43. Feng, Q.; Wu, Z.; Zhou, G. Fixed cost allocation considering the input-output scale based on DEA approach. Comput. Ind. Eng. 2021, 159, 107476.
44. Babina, T.; Fedyk, A.; He, A.; Hodson, J. Artificial intelligence, firm growth, and product innovation. J. Financ. Econ. 2024, 151, 103745.
45. Du, K.; Li, P.; Yan, Z. Do green technology innovations contribute to carbon dioxide emission reduction? Technol. Forecast. Soc. Change. 2019, 146, 297-303.
46. Chen, H.; Yi, J.; Chen, A.; Peng, D.; Yang, J. Green technology innovation and CO2 emission in China: evidence from a spatial-temporal analysis and a nonlinear spatial Durbin model. Energy. Policy. 2023, 172, 113338.
47. Yu, W.; Ye, T.; Zhang, Y.; et al. Global estimates of daily ambient fine particulate matter concentrations and unequal spatiotemporal distribution of population exposure: a machine learning modeling study. Lancet. Planet. Health. 2023, 7, e209-18.
48. Chen, G.; Li, S.; Knibbs, L. D.; et al. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total. Environ. 2018, 636, 52-60.