REFERENCES

1. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623-7.

2. Russian Federation. Seventh National Communication of the Russian Federation, Submitted in Accordance with Articles 4 and 12 of the United Nations Framework Convention on Climate Change and Article 7 of the Kyoto Protocol; Moscow, 2017. https://unfccc.int/sites/default/files/resource/2017%20ARR%20of%20Russia_complete.pdf (accessed 2026-01-26).

3. Ivanov, A. L.; Stolbovoy, V. S. The Initiative “4 per 1000” - a new global challenge for the soils of Russia. Dokuchaev. Soil. Bulletin. 2019, 98, 185-202.

4. Han, H.; Zeeshan, Z.; Talpur, B. A.; et al. Studying long term relationship between carbon emissions, soil, and climate change: insights from a global earth modeling framework. Int. J. Appl. Earth. Obs. Geoinf. 2024, 130, 103902.

5. Miner, K. R.; Turetsky, M. R.; Malina, E.; et al. Permafrost carbon emissions in a changing arctic. Nat. Rev. Earth. Environ. 2022, 3, 55-67.

6. Schuur, E. A.; Abbott, B. W.; Commane, R.; et al. Permafrost and climate change: carbon cycle feedbacks from the warming arctic. Annu. Rev. Environ. Resour. 2022, 47, 343-71.

7. Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; et al. Biologically active organic matter in soils of European Russia. Eurasian. Soil. Sc. 2018, 51, 434-47.

8. Lavallee, J. M.; Soong, J. L.; Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261-73.

9. Kurganova, I. N.; Semenov, V. M.; Kudejarov, V. N. Climate and land use as the key factors of organic matter stability in soils. Dokl. Earth. Sci. 2019, 489, 1481-5.

10. Song, B.; Wang, M.; Zhang, S.; et al. Spatial distribution, drivers, and future variation of soil organic carbon in China’s ecosystems: a meta-analysis and machine-learning assessment. Ecological. Indicators. 2025, 179, 114255.

11. Previdi, M.; Smith, K. L.; Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003.

12. Ivanov, A. L.; Savin, I. Y.; Stolbovoy, V. S.; Dukhanin, A. Y.; Kozlov, D. N.; Bamatov, I. M. Global climate and soil cover - implications for land use in Russia. Dokuchaev. Soil. Bull. 2021, 107, 5-32.

13. Feng, J.; Wang, C.; Lei, J.; et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 2020, 8, 3.

14. Ludwig, B.; Teepe, R.; Lopes de Gerenyu, V.; Flessa, H. CO2 and N2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods-a microcosm study. Soil. Biol. Biochem. 2006, 38, 3516-9.

15. Schaller, J.; Stimmler, P.; Göckede, M.; Augustin, J.; Lacroix, F.; Hoffmann, M. Arctic soil CO2 release during freeze-thaw cycles modulated by silicon and calcium. Sci. Total. Environ. 2023, 870, 161943.

16. Semenov, V. M.; Kravchenko, I. K.; Ivannikova, L. A.; et al. Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems. Eurasian. Soil. Sc. 2006, 39, 251-60.

17. The Ministry of Foreign Affairs of the Russian Federation. Yamalo-Nenets Autonomous Okrug (Information Profile). https://mid.ru/en/foreign_policy/economic_diplomacy/vnesneekonomiceskie-svazi-sub-ektov-rossijskoj-federacii/2010555/ (accessed 2026-01-26).

18. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Report on Climate Features in the Territory of the Russian Federation for 2021; Moscow, 2022. https://cc.voeikovmgo.ru/images/sobytiya/2022/03/doklad_klimat2021.pdf (accessed 2026-01-26).

19. Vodyanitskii, Y. N. Standards for the contents of heavy metals and metalloids in soils. Eurasian. Soil. Sc. 2012, 45, 321-8.

20. Alekseev, I. I.; Dinkelaker, N. V.; Oripova, A. A.; et al. Assessment of ecotoxicological state of soils of the Polar Ural and Southern Yamal. Environ. Health. Habitat. 2017, 96, 941-5. https://innoscience.ru/0016-9900/article/view/640702 (accessed 2026-01-30).

21. Hu, X.; Wang, J.; Lv, Y.; et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Front. Microbiol. 2021, 12, 707786.

22. Campillo-Cora, C.; Rodríguez-Seijo, A.; Pérez-Rodríguez, P.; Fernández-Calviño, D.; Santás-Miguel, V. Effect of heavy metal pollution on soil microorganisms: influence of soil physicochemical properties. A systematic review. Eur. J. Soil. Biol. 2025, 124, 103706.

23. Wang, L.; Zhang, J.; Li, X. Microbial diversity and community assembly in heavy metal contaminated soils. Int. J. Environ. Res. Publ. Health. 2025, 22, 12440.

24. Su, C.; Xie, R.; Liu, D.; Liu, Y.; Liang, R. Ecological responses of soil microbial communities to heavy metal stress in a coal-based industrial region in China. Microorganisms 2023, 11, 1392.

25. Chauhan, A.; Patzner, M. S.; Bhattacharyya, A.; et al. Interactions between iron and carbon in permafrost thaw ponds. Sci. Total. Environ. 2024, 946, 174321.

26. National Atlas of Russia. 2008. The Stages of Evolution of the Administrative-Territorial Structure, Vol. 3; Russia, Moscow: Roskartographia, 496. https://nationalatlas.ru/tom3/ (accessed 2026-01-26).

27. Konyushkov, D. E.; Ananko, T. V.; Gerasimova, M. I.; Lebedeva, I. I. Actualization of the contents of the soil map of Russian Federation (1 : 2.5 M scale) in the format of the classification system of Russian soils for the development of the new digital map of Russia. Dokuchaev. Soil. Bulletin. 2020, 102, 21-48.

28. Zhangurov, E. V.; Kaverin, D. A.; Dymov, A. A.; Startsev, V. V. Permafrost-affected gleyzems of the Subpolar Urals: morphology, cryogenic structure, temperature regime, and physicochemical properties. Eurasian. Soil. Sc. 2025, 58, 107.

29. Kislov, A. V.; Alyautdinov, A. R.; Baranskaya, A. V.; et al. Projection of climate change and the intensity of exogenous processes on the territory of the Yamal-Nenets Autonomous District. Dokl. Earth. Sc. 2023, 510, 487-93.

30. Food and Agriculture Organization of the United Nations (FAO). Standard operating procedure for soil pH determination. FAO: Rome; 2021; 23. https://openknowledge.fao.org/server/api/core/bitstreams/6ad6862a-eadc-437c-b359-ef14cb687222/content (accessed 2026-01-26).

31. Mailappa, A. S. Experimental soil fertility and biology, 1th ed.; CRC Press, 2023.

32. Dembovetsky, A. V.; Tyugai, Z. N.; Shein, E. V. The granulometric composition of soils: history, development of methods, current state, and prospects. Moscow. Univ. Soil. Sci. Bull. 2024, 79, 387-92.

33. Food and Agriculture Organization of the United Nations (FAO). SOP Dumas dry combustion method; FAO: Rome, 2020. https://www.fao.org/global-soil-partnership/glosolan-old/soil-analysis/sops/volume-2-2/en/ (accessed 2026-01-30).

34. Semenov, V. M.; Lebedeva, T. N.; Lopes de Gerenuy, V. O.; Ovsepyan, L. A.; Semenov, M. V.; Kurganova, I. N. Pools and fractions of organic carbon in soil: structure, functions and methods of determination. J. Soils. Environ. 2023, 6, e199. https://soils-journal.ru/index.php/POS/article/view/199 (accessed 2026-01-30).

35. Tong, D.; Li, Z.; Xiao, H.; Nie, X.; Liu, C.; Zhou, M. How do soil microbes exert impact on soil respiration and its temperature sensitivity? Environ. Microbiol. 2021, 23, 3048-58.

36. Matveeva, T.; Sidorchuk, A. Modelling of surface runoff on the Yamal Peninsula, Russia, using ERA5 reanalysis. Water 2020, 12, 2099.

37. Cheng, B.; Dai, H. Y.; Liu, T. J.; et al. Mineralization characteristics of soil organic carbon under different herbaceous plant mosaics in semi-arid grasslands. Sci. Rep. 2024, 14, 22196.

38. Meyer, N.; Welp, G.; Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Global. Biogeochemical. Cycles. 2018, 32, 306-23.

39. Khelifi, F.; Batool, S.; Kechiched, R.; Padoan, E.; Ncibi, K.; Hamed, Y. Abundance, distribution, and ecological/environmental risks of critical rare earth elements (REE) in phosphate ore, soil, tailings, and sediments: application of spectroscopic fingerprinting. J. Soils. Sediments. 2024, 24, 2099-118.

40. Vodyanitskii, Y. Standards for the contents of heavy metals in soils of some states. Ann. Agrar. Sci. 2016, 14, 257-63.

41. Faurat, A.; Azhayev, G.; Shupshibayev, K.; Akhmetov, K.; Boribay, E.; Abylkhassanov, T. Assessment of heavy metal contamination and health risks in “snow cover-soil cover-vegetation system” of urban and rural gardens of an industrial city in Kazakhstan. Int. J. Environ. Res. Public. Health. 2024, 21, 1002.

42. Gasparatos, D. Soil Contamination by heavy metals and metalloids. Environments 2022, 9, 32.

43. SanPiN 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans*; Sanitary Rules and Norms of the Russian Federation; Federal Agency on Technical Regulating and Metrology (GOST R): Moscow, Russia, 2021. https://fsvps.gov.ru/files/postanovlenie-glavnogo-gosudarstve-3/ (accessed 2025-01-30).

44. Tomashunos, V. M.; Abakumov, E. V. The content of heavy metals in soils of the Yamal peninsula and the Bely Island. Hyg. Sanit. 2015, 93, 26-31. (in Russian with English abstract). https://www.researchgate.net/publication/281832818_The_content_of_heavy_metals_in_soils_of_the_Yamal_Peninsula_and_thE_Bely_Island (accessed 2025-01-26).

45. Kostrov, N. P.; Ivanov, K. S. Gravitationally-geological model of the Polar Urals transect. Lithosphere 2024, 24, 587-608.

46. Perel’man, A. I.; Kasimov, N. S. Geochemistry of the Landscape; Astreya: Moscow, 1999. https://www.geokniga.org/books/3161 (accessed 2025-01-26).

47. Nizamutdinov, T.; Bolshiianova, O.; Morgun, E.; Abakumov, E. Molecular composition of humic acids and soil organic matter stabilization rate of the first arctic carbon measurement supersite “seven larches”. Sustainability 2024, 16, 6673.

48. Tulina, A. S.; Semenov, V. M.; Rozanova, L. N.; Kuznetsova, T. V.; Semenova, N. A. Influence of moisture on the stability of soil organic matter and plant residues. Eurasian. Soil. Sci. 2009, 42, 1241-8.

49. Polyudova, T. V.; Antipieva, M. V. Microbial Ecology: Textbook; Ministry of Science and Higher Education of the Russian Federation, Perm State Agro-Technological University named after academician D.N. Pryanishnikov; IPC “Prokrost”: Perm, 2024. https://www.cnshb.ru/content/2025/04455134.pdf (accessed 2025-01-26).

50. Ding, J.; Yu, S. Integrating soil physicochemical properties and microbial functional prediction to assess land-use impacts in a cold-region wetland ecosystem. Life. 2025, 15, 972.

51. Zhang, S.; Zheng, Q.; Noll, L.; Hu, Y.; Wanek, W. Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil. Biol. Biochem. 2019, 135, 304-315.

52. Carvalho, M. L.; Maciel, V. F.; Bordonal, R. D. O.; et al. Stabilization of organic matter in soils: drivers, mechanisms, and analytical tools - a literature review. Rev. Bras. Cienc. Solo. 2023, 47, e0230130.

53. Gurkova, E. A.; Sokolov, D. A. Influence of texture on humus accumulation in soils of dry steppes of Tuva. Eurasian. Soil. Sc. 2022, 55, 90-101. https://link.springer.com/article/10.1134/S1064229322010069 (accessed 2026-01-30).

54. Matyshak, G. V.; Tarkhov, M. O.; Ryzhova, I. M. et al. Temperature sensitivity of СO2 efflux from the surface of palsa peatlands in Northwestern Siberia as assessed by transplantation method. Eurasian. Soil. Sc. 2021, 54, 1028-37.

55. Tarkhov, M. O.; Matyshak, G. V.; Ryzhova, I. M.; et al. Temperature Sensitivity of peatland soils respiration across different terrestrial ecosystems. Eurasian. Soil. Sc. 2024, 57, 1616-27.

56. Maslov, M. N.; Maslova, O. A.; Kopeina, E. I. Biochemical stability of water-soluble organic matter in tundra soils of the Khibiny Mountains during postfire succession. Eurasian. Soil. Sc. 2021, 54, 316-24.

57. Buzin, I. S.; Makarov, M. I.; Malysheva, T. I.; Kadulin, M. S.; Koroleva, N. E.; Maslov, M. N. Transformation of nitrogen compounds in soils of mountain tundra ecosystems in the Khibiny. Eurasian. Soil. Sci. 2019, 52, 518-25.

58. Ali, R. S.; Poll, C.; Kandeler, E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil. Biol. Biochem. 2018, 127, 60-70.

59. Kim, D.; Park, H. J.; Kim, M.; Lee, S.; Hong, S. G.; Kim, E.; Lee, H. Temperature sensitivity of Antarctic soil-humic substance degradation by cold-adapted bacteria. Environ. Microbiol. 2022, 24, 265-75.

60. Bracho, R.; Natali, S.; Pegoraro, E.; et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil. Biol. Biochem. 2016, 97, 1-14.

61. Gentsch, N.; Wild, B.; Mikutta, R.; et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change. Biol. 2018, 24, 3401-15.

62. Ren, S.; Ding, J.; Yan, Z.; et al. Higher temperature sensitivity of soil C release to atmosphere from northern permafrost soils as indicated by a meta-analysis. Glob. Biogeochem. Cycles. 2020, 34, e2020GB006688.

63. Alekseev, I. I.; Abakumov, E. V.; Shamilishvili, G. A.; Lodygin, E. D. Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region. Gigiena. i. Sanitaria. 2016, 95, 818-21. https://colab.ws/articles/10.18821/0016-9900-2016-95-9-818-821 (accessed 2026-01-30).

64. Zharikova, E. A. Assessment of heavy metals content and environmental risk in urban soils. Bull. Tomsk. Polytech. Univ. Geo. Assets. Eng. 2021, 332, 164-173.

65. Moskovchenko, D. V. Biogeochemical properties of the soils of Messoyakha River basin (Tazovsky district of Yamal-Nenets Autonomous Area). Tyumen. State. Univ. Her. Nat. Resour. Use. Ecol. 2016, 2, 8-21.

66. Bechina, I. N.; Popova, L. F.; Vasilyeva, A. I.; Korobitsina, Y. S. Accumulation and redistribution of heavy metals in soils of Novodvinsk City. Nauchnyi. Dialog. 2013, 3, 8-23. https://cyberleninka.ru/article/n/nakoplenie-i-pereraspredelenie-tyazhelyh-metallov-v-pochvah-g-novodvinska (accessed 2026-01-26).

67. Moskovchenko, D. V.; Romanenko, E. A. Biogeochemical features of landscapes of the Nadym region of YANAO. Bull. Nizhnevartovsk. State. Univ. 2022, 4, 122-36. https://vestnik.nvsu.ru/en/nauka/article/112314/view (accessed 2026-01-30).

68. Sazykin, I.; Khmelevtsova, L.; Azhogina, T.; Sazykina, M. Heavy metals influence on the bacterial community of soils: a review. Agriculture 2023, 13, 653.

69. Guo, H.; Nasir, M.; Lv, J.; Dai, Y.; Gao, J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicol. Environ. Saf. 2017, 144, 300-306.

70. Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255.

71. Abakumov, E.; Kimeklis, A.; Gladkov, G.; et al. Microbiome of abandoned soils of former agricultural cryogenic ecosystems of central part of Yamal Region. Czech. Polar. Rep. 2022, 12, 232-45.

72. Trifonova, T. A.; Kurochkin, I. N.; Kurbatov, Y. N. Heavy metals in soils of various functional zones of urbanized territories: assessment of the content and environmental risk. Theor. Appl. Ecol. 2023, 2, 38-46.

73. Golubeva, O. Y.; Alikina, Y. A.; Brazovskaya, E. Y.; Vasilenko, N. M. Hemolytic activity and cytotoxicity of synthetic nanoclays with montmorillonite structure for medical applications. Nanomaterials 2023, 13, 1470.

74. Pleshakova, Y. V.; Zelenova, N. A.; Ngun, C. T.; Reshetnikov, M. V. Impact of iron, copper and nickel ions introduced into the soil separately and in various combinations on soil microbiota. Povolzhskiy. J. Ecol. 2020, 1, 66-85.

Carbon Footprints
ISSN 2831-932X (Online)
Follow Us

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/