REFERENCES
1. Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623-7.
2. Russian Federation. Seventh National Communication of the Russian Federation, Submitted in Accordance with Articles 4 and 12 of the United Nations Framework Convention on Climate Change and Article 7 of the Kyoto Protocol; Moscow, 2017. https://unfccc.int/sites/default/files/resource/2017%20ARR%20of%20Russia_complete.pdf (accessed 2026-01-26).
3. Ivanov, A. L.; Stolbovoy, V. S. The Initiative “4 per 1000” - a new global challenge for the soils of Russia. Dokuchaev. Soil. Bulletin. 2019, 98, 185-202.
4. Han, H.; Zeeshan, Z.; Talpur, B. A.; et al. Studying long term relationship between carbon emissions, soil, and climate change: insights from a global earth modeling framework. Int. J. Appl. Earth. Obs. Geoinf. 2024, 130, 103902.
5. Miner, K. R.; Turetsky, M. R.; Malina, E.; et al. Permafrost carbon emissions in a changing arctic. Nat. Rev. Earth. Environ. 2022, 3, 55-67.
6. Schuur, E. A.; Abbott, B. W.; Commane, R.; et al. Permafrost and climate change: carbon cycle feedbacks from the warming arctic. Annu. Rev. Environ. Resour. 2022, 47, 343-71.
7. Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; et al. Biologically active organic matter in soils of European Russia. Eurasian. Soil. Sc. 2018, 51, 434-47.
8. Lavallee, J. M.; Soong, J. L.; Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Chang. Biol. 2020, 26, 261-73.
9. Kurganova, I. N.; Semenov, V. M.; Kudejarov, V. N. Climate and land use as the key factors of organic matter stability in soils. Dokl. Earth. Sci. 2019, 489, 1481-5.
10. Song, B.; Wang, M.; Zhang, S.; et al. Spatial distribution, drivers, and future variation of soil organic carbon in China’s ecosystems: a meta-analysis and machine-learning assessment. Ecological. Indicators. 2025, 179, 114255.
11. Previdi, M.; Smith, K. L.; Polvani, L. M. Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett. 2021, 16, 093003.
12. Ivanov, A. L.; Savin, I. Y.; Stolbovoy, V. S.; Dukhanin, A. Y.; Kozlov, D. N.; Bamatov, I. M. Global climate and soil cover - implications for land use in Russia. Dokuchaev. Soil. Bull. 2021, 107, 5-32.
13. Feng, J.; Wang, C.; Lei, J.; et al. Warming-induced permafrost thaw exacerbates tundra soil carbon decomposition mediated by microbial community. Microbiome 2020, 8, 3.
14. Ludwig, B.; Teepe, R.; Lopes de Gerenyu, V.; Flessa, H. CO2 and N2O emissions from gleyic soils in the Russian tundra and a German forest during freeze-thaw periods-a microcosm study. Soil. Biol. Biochem. 2006, 38, 3516-9.
15. Schaller, J.; Stimmler, P.; Göckede, M.; Augustin, J.; Lacroix, F.; Hoffmann, M. Arctic soil CO2 release during freeze-thaw cycles modulated by silicon and calcium. Sci. Total. Environ. 2023, 870, 161943.
16. Semenov, V. M.; Kravchenko, I. K.; Ivannikova, L. A.; et al. Experimental determination of the active organic matter content in some soils of natural and agricultural ecosystems. Eurasian. Soil. Sc. 2006, 39, 251-60.
17. The Ministry of Foreign Affairs of the Russian Federation. Yamalo-Nenets Autonomous Okrug (Information Profile). https://mid.ru/en/foreign_policy/economic_diplomacy/vnesneekonomiceskie-svazi-sub-ektov-rossijskoj-federacii/2010555/ (accessed 2026-01-26).
18. Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet). Report on Climate Features in the Territory of the Russian Federation for 2021; Moscow, 2022. https://cc.voeikovmgo.ru/images/sobytiya/2022/03/doklad_klimat2021.pdf (accessed 2026-01-26).
19. Vodyanitskii, Y. N. Standards for the contents of heavy metals and metalloids in soils. Eurasian. Soil. Sc. 2012, 45, 321-8.
20. Alekseev, I. I.; Dinkelaker, N. V.; Oripova, A. A.; et al. Assessment of ecotoxicological state of soils of the Polar Ural and Southern Yamal. Environ. Health. Habitat. 2017, 96, 941-5. https://innoscience.ru/0016-9900/article/view/640702 (accessed 2026-01-30).
21. Hu, X.; Wang, J.; Lv, Y.; et al. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Front. Microbiol. 2021, 12, 707786.
22. Campillo-Cora, C.; Rodríguez-Seijo, A.; Pérez-Rodríguez, P.; Fernández-Calviño, D.; Santás-Miguel, V. Effect of heavy metal pollution on soil microorganisms: influence of soil physicochemical properties. A systematic review. Eur. J. Soil. Biol. 2025, 124, 103706.
23. Wang, L.; Zhang, J.; Li, X. Microbial diversity and community assembly in heavy metal contaminated soils. Int. J. Environ. Res. Publ. Health. 2025, 22, 12440.
24. Su, C.; Xie, R.; Liu, D.; Liu, Y.; Liang, R. Ecological responses of soil microbial communities to heavy metal stress in a coal-based industrial region in China. Microorganisms 2023, 11, 1392.
25. Chauhan, A.; Patzner, M. S.; Bhattacharyya, A.; et al. Interactions between iron and carbon in permafrost thaw ponds. Sci. Total. Environ. 2024, 946, 174321.
26. National Atlas of Russia. 2008. The Stages of Evolution of the Administrative-Territorial Structure, Vol. 3; Russia, Moscow: Roskartographia, 496. https://nationalatlas.ru/tom3/ (accessed 2026-01-26).
27. Konyushkov, D. E.; Ananko, T. V.; Gerasimova, M. I.; Lebedeva, I. I. Actualization of the contents of the soil map of Russian Federation (1 : 2.5 M scale) in the format of the classification system of Russian soils for the development of the new digital map of Russia. Dokuchaev. Soil. Bulletin. 2020, 102, 21-48.
28. Zhangurov, E. V.; Kaverin, D. A.; Dymov, A. A.; Startsev, V. V. Permafrost-affected gleyzems of the Subpolar Urals: morphology, cryogenic structure, temperature regime, and physicochemical properties. Eurasian. Soil. Sc. 2025, 58, 107.
29. Kislov, A. V.; Alyautdinov, A. R.; Baranskaya, A. V.; et al. Projection of climate change and the intensity of exogenous processes on the territory of the Yamal-Nenets Autonomous District. Dokl. Earth. Sc. 2023, 510, 487-93.
30. Food and Agriculture Organization of the United Nations (FAO). Standard operating procedure for soil pH determination. FAO: Rome; 2021; 23. https://openknowledge.fao.org/server/api/core/bitstreams/6ad6862a-eadc-437c-b359-ef14cb687222/content (accessed 2026-01-26).
32. Dembovetsky, A. V.; Tyugai, Z. N.; Shein, E. V. The granulometric composition of soils: history, development of methods, current state, and prospects. Moscow. Univ. Soil. Sci. Bull. 2024, 79, 387-92.
33. Food and Agriculture Organization of the United Nations (FAO). SOP Dumas dry combustion method; FAO: Rome, 2020. https://www.fao.org/global-soil-partnership/glosolan-old/soil-analysis/sops/volume-2-2/en/ (accessed 2026-01-30).
34. Semenov, V. M.; Lebedeva, T. N.; Lopes de Gerenuy, V. O.; Ovsepyan, L. A.; Semenov, M. V.; Kurganova, I. N. Pools and fractions of organic carbon in soil: structure, functions and methods of determination. J. Soils. Environ. 2023, 6, e199. https://soils-journal.ru/index.php/POS/article/view/199 (accessed 2026-01-30).
35. Tong, D.; Li, Z.; Xiao, H.; Nie, X.; Liu, C.; Zhou, M. How do soil microbes exert impact on soil respiration and its temperature sensitivity? Environ. Microbiol. 2021, 23, 3048-58.
36. Matveeva, T.; Sidorchuk, A. Modelling of surface runoff on the Yamal Peninsula, Russia, using ERA5 reanalysis. Water 2020, 12, 2099.
37. Cheng, B.; Dai, H. Y.; Liu, T. J.; et al. Mineralization characteristics of soil organic carbon under different herbaceous plant mosaics in semi-arid grasslands. Sci. Rep. 2024, 14, 22196.
38. Meyer, N.; Welp, G.; Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Global. Biogeochemical. Cycles. 2018, 32, 306-23.
39. Khelifi, F.; Batool, S.; Kechiched, R.; Padoan, E.; Ncibi, K.; Hamed, Y. Abundance, distribution, and ecological/environmental risks of critical rare earth elements (REE) in phosphate ore, soil, tailings, and sediments: application of spectroscopic fingerprinting. J. Soils. Sediments. 2024, 24, 2099-118.
40. Vodyanitskii, Y. Standards for the contents of heavy metals in soils of some states. Ann. Agrar. Sci. 2016, 14, 257-63.
41. Faurat, A.; Azhayev, G.; Shupshibayev, K.; Akhmetov, K.; Boribay, E.; Abylkhassanov, T. Assessment of heavy metal contamination and health risks in “snow cover-soil cover-vegetation system” of urban and rural gardens of an industrial city in Kazakhstan. Int. J. Environ. Res. Public. Health. 2024, 21, 1002.
43. SanPiN 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans*; Sanitary Rules and Norms of the Russian Federation; Federal Agency on Technical Regulating and Metrology (GOST R): Moscow, Russia, 2021. https://fsvps.gov.ru/files/postanovlenie-glavnogo-gosudarstve-3/ (accessed 2025-01-30).
44. Tomashunos, V. M.; Abakumov, E. V. The content of heavy metals in soils of the Yamal peninsula and the Bely Island. Hyg. Sanit. 2015, 93, 26-31. (in Russian with English abstract). https://www.researchgate.net/publication/281832818_The_content_of_heavy_metals_in_soils_of_the_Yamal_Peninsula_and_thE_Bely_Island (accessed 2025-01-26).
45. Kostrov, N. P.; Ivanov, K. S. Gravitationally-geological model of the Polar Urals transect. Lithosphere 2024, 24, 587-608.
46. Perel’man, A. I.; Kasimov, N. S. Geochemistry of the Landscape; Astreya: Moscow, 1999. https://www.geokniga.org/books/3161 (accessed 2025-01-26).
47. Nizamutdinov, T.; Bolshiianova, O.; Morgun, E.; Abakumov, E. Molecular composition of humic acids and soil organic matter stabilization rate of the first arctic carbon measurement supersite “seven larches”. Sustainability 2024, 16, 6673.
48. Tulina, A. S.; Semenov, V. M.; Rozanova, L. N.; Kuznetsova, T. V.; Semenova, N. A. Influence of moisture on the stability of soil organic matter and plant residues. Eurasian. Soil. Sci. 2009, 42, 1241-8.
49. Polyudova, T. V.; Antipieva, M. V. Microbial Ecology: Textbook; Ministry of Science and Higher Education of the Russian Federation, Perm State Agro-Technological University named after academician D.N. Pryanishnikov; IPC “Prokrost”: Perm, 2024. https://www.cnshb.ru/content/2025/04455134.pdf (accessed 2025-01-26).
50. Ding, J.; Yu, S. Integrating soil physicochemical properties and microbial functional prediction to assess land-use impacts in a cold-region wetland ecosystem. Life. 2025, 15, 972.
51. Zhang, S.; Zheng, Q.; Noll, L.; Hu, Y.; Wanek, W. Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization. Soil. Biol. Biochem. 2019, 135, 304-315.
52. Carvalho, M. L.; Maciel, V. F.; Bordonal, R. D. O.; et al. Stabilization of organic matter in soils: drivers, mechanisms, and analytical tools - a literature review. Rev. Bras. Cienc. Solo. 2023, 47, e0230130.
53. Gurkova, E. A.; Sokolov, D. A. Influence of texture on humus accumulation in soils of dry steppes of Tuva. Eurasian. Soil. Sc. 2022, 55, 90-101. https://link.springer.com/article/10.1134/S1064229322010069 (accessed 2026-01-30).
54. Matyshak, G. V.; Tarkhov, M. O.; Ryzhova, I. M. et al. Temperature sensitivity of СO2 efflux from the surface of palsa peatlands in Northwestern Siberia as assessed by transplantation method. Eurasian. Soil. Sc. 2021, 54, 1028-37.
55. Tarkhov, M. O.; Matyshak, G. V.; Ryzhova, I. M.; et al. Temperature Sensitivity of peatland soils respiration across different terrestrial ecosystems. Eurasian. Soil. Sc. 2024, 57, 1616-27.
56. Maslov, M. N.; Maslova, O. A.; Kopeina, E. I. Biochemical stability of water-soluble organic matter in tundra soils of the Khibiny Mountains during postfire succession. Eurasian. Soil. Sc. 2021, 54, 316-24.
57. Buzin, I. S.; Makarov, M. I.; Malysheva, T. I.; Kadulin, M. S.; Koroleva, N. E.; Maslov, M. N. Transformation of nitrogen compounds in soils of mountain tundra ecosystems in the Khibiny. Eurasian. Soil. Sci. 2019, 52, 518-25.
58. Ali, R. S.; Poll, C.; Kandeler, E. Dynamics of soil respiration and microbial communities: Interactive controls of temperature and substrate quality. Soil. Biol. Biochem. 2018, 127, 60-70.
59. Kim, D.; Park, H. J.; Kim, M.; Lee, S.; Hong, S. G.; Kim, E.; Lee, H. Temperature sensitivity of Antarctic soil-humic substance degradation by cold-adapted bacteria. Environ. Microbiol. 2022, 24, 265-75.
60. Bracho, R.; Natali, S.; Pegoraro, E.; et al. Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil. Biol. Biochem. 2016, 97, 1-14.
61. Gentsch, N.; Wild, B.; Mikutta, R.; et al. Temperature response of permafrost soil carbon is attenuated by mineral protection. Glob. Change. Biol. 2018, 24, 3401-15.
62. Ren, S.; Ding, J.; Yan, Z.; et al. Higher temperature sensitivity of soil C release to atmosphere from northern permafrost soils as indicated by a meta-analysis. Glob. Biogeochem. Cycles. 2020, 34, e2020GB006688.
63. Alekseev, I. I.; Abakumov, E. V.; Shamilishvili, G. A.; Lodygin, E. D. Heavy metals and hydrocarbons content in soils of settlements of the Yamal-Nenets autonomous region. Gigiena. i. Sanitaria. 2016, 95, 818-21. https://colab.ws/articles/10.18821/0016-9900-2016-95-9-818-821 (accessed 2026-01-30).
64. Zharikova, E. A. Assessment of heavy metals content and environmental risk in urban soils. Bull. Tomsk. Polytech. Univ. Geo. Assets. Eng. 2021, 332, 164-173.
65. Moskovchenko, D. V. Biogeochemical properties of the soils of Messoyakha River basin (Tazovsky district of Yamal-Nenets Autonomous Area). Tyumen. State. Univ. Her. Nat. Resour. Use. Ecol. 2016, 2, 8-21.
66. Bechina, I. N.; Popova, L. F.; Vasilyeva, A. I.; Korobitsina, Y. S. Accumulation and redistribution of heavy metals in soils of Novodvinsk City. Nauchnyi. Dialog. 2013, 3, 8-23. https://cyberleninka.ru/article/n/nakoplenie-i-pereraspredelenie-tyazhelyh-metallov-v-pochvah-g-novodvinska (accessed 2026-01-26).
67. Moskovchenko, D. V.; Romanenko, E. A. Biogeochemical features of landscapes of the Nadym region of YANAO. Bull. Nizhnevartovsk. State. Univ. 2022, 4, 122-36. https://vestnik.nvsu.ru/en/nauka/article/112314/view (accessed 2026-01-30).
68. Sazykin, I.; Khmelevtsova, L.; Azhogina, T.; Sazykina, M. Heavy metals influence on the bacterial community of soils: a review. Agriculture 2023, 13, 653.
69. Guo, H.; Nasir, M.; Lv, J.; Dai, Y.; Gao, J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicol. Environ. Saf. 2017, 144, 300-306.
70. Li, S.; Zhao, B.; Jin, M.; Hu, L.; Zhong, H.; He, Z. A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J. Hazard. Mater. 2020, 400, 123255.
71. Abakumov, E.; Kimeklis, A.; Gladkov, G.; et al. Microbiome of abandoned soils of former agricultural cryogenic ecosystems of central part of Yamal Region. Czech. Polar. Rep. 2022, 12, 232-45.
72. Trifonova, T. A.; Kurochkin, I. N.; Kurbatov, Y. N. Heavy metals in soils of various functional zones of urbanized territories: assessment of the content and environmental risk. Theor. Appl. Ecol. 2023, 2, 38-46.
73. Golubeva, O. Y.; Alikina, Y. A.; Brazovskaya, E. Y.; Vasilenko, N. M. Hemolytic activity and cytotoxicity of synthetic nanoclays with montmorillonite structure for medical applications. Nanomaterials 2023, 13, 1470.





