REFERENCES
1. Gabrielli, P.; Gazzani, M.; Mazzotti, M. The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Ind. Eng. Chem. Res. 2020, 59, 7033-45.
2. Rafiq, A.; Ren, J.; Laosiripojana, N.; Silalertruksa, T.; Gheewala, S. H. Life cycle environmental and economic viability analysis of CO2 utilization for chemical production in the cement sector. Sustain. Prod. Consump. 2025, 58, 364-84.
3. Do, T. N.; Kim, J. Green C2-C4 hydrocarbon production through direct CO2 hydrogenation with renewable hydrogen: Process development and techno-economic analysis. Energy. Convers. Manag. 2020, 214, 112866.
4. International Energy Agency. CCUS projects around the world are reaching new milestones, 2025. Available from: https://www.iea.org/commentaries/ccus-projects-around-the-world-are-reaching-new-milestones [Last accessed on 26 Jan 2026].
5. Hepburn, C.; Adlen, E.; Beddington, J.; et al. The technological and economic prospects for CO2 utilization and removal. Nature 2019, 575, 87-97.
6. Nyqvist, E.; Baumann, H.; Shavalieva, G.; Janssen, M. Methodological review of life cycle assessments of carbon capture and utilisation - Does modelling reflect purposes? Clean. Environ. Syst. 2025, 18, 100291.
7. Win, S. Y.; Opaprakasit, P.; Papong, S. Environmental and economic assessment of carbon capture and utilization at coal-fired power plant in Thailand. J. Clean. Prod. 2023, 414, 137595.
8. Ravikumar, D.; Keoleian, G. A.; Miller, S. A.; Sick, V. Assessing the relative climate impact of carbon utilization for concrete, chemical, and mineral production. Environ. Sci. Technol. 2021, 55, 12019-31.
9. Deutz, S.; Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption. Nat. Energy. 2021, 6, 203-13.
10. Bui, M.; Adjiman, C. S.; Bardow, A.; et al. Carbon capture and storage (CCS): the way forward. Energy. Environ. Sci. 2018, 11, 1062-176.
11. International Energy Agency. Direct air capture - a key technology for net zero. Available from: https://iea.blob.core.windows.net/assets/78633715-15c0-44e1-81df-41123c556d57/DirectAirCapture_Akeytechnologyfornetzero.pdf [Last accessed on 26 Jan 2026].
12. International Energy Agency. Direct air capture 2022: a key technology for net zero, 2022. Available from: https://www.iea.org/reports/direct-air-capture-2022 [Last accessed on 26 Jan 2026].
13. Braun, J.; Werner, C.; Gerten, D.; Stenzel, F.; Schaphoff, S.; Lucht, W. Multiple planetary boundaries preclude biomass crops for carbon capture and storage outside of agricultural areas. Commun. Earth. Environ. 2025, 6, 2033.
14. Stenzel, F.; Greve, P.; Lucht, W.; Tramberend, S.; Wada, Y.; Gerten, D. Irrigation of biomass plantations may globally increase water stress more than climate change. Nat. Commun. 2021, 12, 1512.
15. Johnstone, I.; Allen, M.; Axelsson, K.; et al. The revised oxford principles for net zero aligned carbon offsetting. Environ. Res. Lett. 2025, 20, 091005.
16. NASA. Carbon dioxide - earth indicator, 2025. Available from: https://climate.nasa.gov/vital-signs/carbon-dioxide/?intent=121 [Last accessed on 26 Jan 2026].
17. Lei, T.; Wang, D.; Yu, X.; et al. Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature 2023, 622, 514-20.
18. Global Carbon Project. Fossil CO2 emissions at record high in 2023. Available from: https://globalcarbonbudget.org/fossil-co2-emissions-at-record-high-in-2023/ [Last accessed on 26 Jan 2026].
19. Zhang, Y.; Jackson, C.; Krevor, S. The feasibility of reaching gigatonne scale CO2 storage by mid-century. Nat. Commun. 2024, 15, 6913.
20. International Energy Agency. Putting CO2 to use, 2019. Available from: https://www.iea.org/reports/putting-co2-to-use?utm [Last accessed on 26 Jan 2026].
21. International Energy Agency. CO2 transport and storage, 2025. Available from: https://www.iea.org/energy-system/carbon-capture-utilisation-and-storage/co2-transport-and-storage [Last accessed on 26 Jan 2026].
22. World Resources Institute. 7 things to know about carbon capture, utilization and sequestration. Washington, DC: WRI, 2025. Available from: https://www.wri.org/insights/carbon-capture-technology [Last accessed on 26 Jan 2026].
23. Kim, C.; Lee, Y.; Lee, H.; Lee, U.; Kim, K. Economic and environmental potential of green hydrogen carriers (GHCs) produced via reduction of amine-captured CO2. Energy. Convers. Manag. 2023, 291, 117302.
24. Rafiq, A. Exploring the potential of CO2-derived bulk materials industries in Thailand: life cycle assessment and market feasibility. Ph.D. Dissertation, the Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Thailand, 2025.
25. Rafiq, A.; Farooq, A.; Gheewala, S. H. Life cycle assessment of CO2-based and conventional methanol production pathways in Thailand. Processes 2024, 12, 1868.
26. Martín, M.; Grossmann, I. E. Optimal integration of a self sustained algae based facility with solar and/or wind energy. J. Clean. Prod. 2017, 145, 336-47.
27. Driver, J. G.; Bernard, E.; Patrizio, P.; Fennell, P. S.; Scrivener, K.; Myers, R. J. Global decarbonization potential of CO2 mineralization in concrete materials. Proc. Natl. Acad. Sci. USA. 2024, 121, e2313475121.
28. Tariq, G.; Chen, Z.; Zhao, M. Techno-economic and life cycle assessment of integrated bio- and e-methanol production from biomass with carbon capture and utilization. Chem. Eng. J. 2025, 515, 163850.
29. Restrepo-valencia, S.; Capaz, R. S.; Ortiz, P. S. Waste biogenic carbon to alternative methanol production: A comprehensive analysis for ethanol distilleries. J. Clean. Prod. 2025, 495, 145019.
30. Khojasteh-salkuyeh, Y.; Ashrafi, O.; Mostafavi, E.; Navarri, P. CO2 utilization for methanol production; Part I: process design and life cycle GHG assessment of different pathways. J. CO2. Util. 2021, 50, 101608.
31. Sarp, S.; Gonzalez, Hernandez. S.; Chen, C.; Sheehan, S. W. Alcohol production from carbon dioxide: methanol as a fuel and chemical feedstock. Joule 2021, 5, 59-76.
32. Shi, C.; Labbaf, B.; Mostafavi, E.; Mahinpey, N. Methanol production from water electrolysis and tri-reforming: Process design and technical-economic analysis. J. CO2. Util. 2020, 38, 241-51.
33. Suescum-Morales, D.; Fernández-Ledesma, E.; González-Caro, Á.; Merino-Lechuga, A. M.; Fernández-Rodríguez, J. M.; Jiménez, J. R. Carbon emission evaluation of CO2 curing in vibro-compacted precast concrete made with recycled aggregates. Materials 2023, 16, 2436.
34. Fu, X.; Guerini, A.; Zampini, D.; Rotta, Loria. A. F. Storing CO2 while strengthening concrete by carbonating its cement in suspension. Commun. Mater. 2024, 5, 546.
35. National Academies of Sciences, Engineering, and Medicine. Negative emissions technologies and reliable sequestration: a research agenda. Washington, DC: The National Academies Press, 2019.
36. Sick, V.; Stokes, G.; Mason, F. C. CO2 utilization and market size projection for CO2-treated construction materials. Front. Clim. 2022, 4, 878756.
37. Wang, Q.; He, Y.; Shen, J.; Hu, X.; Ma, Z. State of charge-dependent polynomial equivalent circuit modeling for electrochemical impedance spectroscopy of lithium-ion batteries. IEEE. Trans. Power. Electron. 2018, 33, 8449-60.
38. Ravi, A.; Rajkumar, J. K.; Perumal, A. P. P. T.; et al. Energy storage systems - energizing the future: a review. E3S. Web. Conf. 2025, 611, 05004.
39. Catelani, M.; Ciani, L.; Corti, F.; et al. Experimental characterization of hybrid supercapacitor under different operating conditions using EIS measurements. IEEE. Trans. Instrum. Meas. 2024, 73, 1-10.
40. Dong, Z.; Zhang, Z.; Li, Z.; et al. A survey of battery-supercapacitor hybrid energy storage systems: concept, topology, control and application. Symmetry 2022, 14, 1085.
41. Ozkan, M. Atmospheric alchemy: the energy and cost dynamics of direct air carbon capture. MRS. Energy. Sustain. 2025, 12, 46-61.
42. Rafiq, A.; Morris, C.; Schudel, A.; Gheewala, S. Life cycle assessment of microalgae-based products for carbon dioxide utilization in Thailand: biofertilizer, fish feed, and biodiesel. F1000Research 2025, 13, 1503.
43. Patel, G. H.; Havukainen, J.; Horttanainen, M.; Soukka, R.; Tuomaala, M. Climate change performance of hydrogen production based on life cycle assessment. Green. Chem. 2024, 26, 992-1006.
44. Consonni, S.; Mastropasqua, L.; Spinelli, M.; Barckholtz, T. A.; Campanari, S. Low-carbon hydrogen via integration of steam methane reforming with molten carbonate fuel cells at low fuel utilization. Adv. Appl. Energy. 2021, 2, 100010.
45. Sahu, A. K.; Rufford, T. E.; Ali, S. H.; et al. Material needs for power-to-X systems for CO2 utilization require a life cycle approach. Chem. Sci. 2025, 16, 5819-35.
46. Farajzadeh, R.; Khoshnevis, N.; Solomon, D.; Masalmeh, S.; Bruining, J. Life-cycle assessment of oil recovery using dimethyl ether produced from green hydrogen and captured CO2. Sci. Rep. 2025, 15, 4027.
47. Agbejule, A.; Sempron-Namuag, P. A bibliometric analysis of carbon capture, utilization and storage (CCUS): identifying barriers and drivers. Appl. Energy. 2025, 400, 126604.
48. International Energy Agency. Developing a research agenda for carbon dioxide removal and reliable sequestration, 2023. Available from: https://www.iea.org/commentaries/is-carbon-capture-too-expensive [Last accessed on 26 Jan 2026].
49. Hu, J.; Cai, Y.; Xie, J.; Hou, D.; Yu, L.; Deng, D. Selectivity control in CO2 hydrogenation to one-carbon products. Chem 2024, 10, 1084-117.
50. Faber, G.; Sick, V. Identifying and mitigating greenwashing of carbon utilization products; University of Michigan: Ann Arbor, MI, USA, 2022. Available from: https://backend.production.deepblue-documents.lib.umich.edu/server/api/core/bitstreams/3f1fa91a-a844-4dc4-84c6-9d77d398e157/content [Last accessed on 26 Jan 2026].
51. Jones, C. R.; Olfe-Kräutlein, B.; Naims, H.; Armstrong, K. The social acceptance of carbon dioxide utilisation: a review and research agenda. Front. Energy. Res. 2017, 5, 11.
52. Wang, P.; Robinson, A. J.; Papadokonstantakis, S. Prospective techno-economic and life cycle assessment: a review across established and emerging carbon capture, storage and utilization (CCS/CCU) technologies. Front. Energy. Res. 2024, 12, 1412770.
53. Oil and Gas Climate Initiative; Boston Consulting Group. Carbon capture and utilization as a decarbonization lever. White Paper, 2024. Available from: https://www.ogci.com/wp-content/uploads/2024/05/CCU-Report-vf.pdf [Last accessed on 26 Jan 2026].
54. Kleinekorte, J.; Leitl, M.; Zibunas, C.; Bardow, A. What shall we do with steel mill off-gas: polygeneration systems minimizing greenhouse gas emissions. Environ. Sci. Technol. 2022, 56, 13294-304.
55. Porter, R. T.; Cobden, P. D.; Mahgerefteh, H. Novel process design and techno-economic simulation of methanol synthesis from blast furnace gas in an integrated steelworks CCUS system. J. CO2. Util. 2022, 66, 102278.
56. Silva, J. F. L.; Souza, G. M.; Filho, R. M.; Yang, Y.; Li, F. Case studies of CO2 utilization in the production of ethanol: overview of costs and greenhouse gas emissions; IEA Bioenergy: Task 39, 2024. Available from: https://www.ieabioenergy.com/wp-content/uploads/2025/02/Case-studies-of-CO2-utilization-in-the-production-of-ethanol.pdf [Last accessed on 26 Jan 2026].
57. Climate Change Advisory Council Secretariat. EU's carbon border adjustment mechanism (CBAM) fact sheet. Dublin, Ireland: Climate Change Advisory Council Secretariat, 2025. Available from: https://www.climatecouncil.ie/councilpublications/secretariatfactsheets/ [Last accessed on 26 Jan 2026].
58. Carbon Capture Coalition. Primer: 45Q Tax Credit for Carbon Capture Projects, 2025. Available from: https://carboncapturecoalition.org/resource/45q-tax-credit-for-carbon-capture-projects [Last accessed on 26 Jan 2026].
59. Moch, J. M.; Xue, W.; Holdren, J. P. Carbon capture, utilization, and storage: technologies and costs in the U.S. context. 2022. Available from: https://www.belfercenter.org/publication/carbon-capture-utilization-and-storage-technologies-and-costs-us-context [Last accessed on 26 Jan 2026].
60. Agency for Natural Resources and Energy. Overview of basic hydrogen strategy, Government of Japan, 2023. Available from: https://www.meti.go.jp/shingikai/enecho/shoene_shinene/suiso_seisaku/pdf/20230606_4.pdf [Last accessed on 26 Jan 2026].
61. Williment, C. Microsoft & exomad green: the world's largest carbon removal. Sustainability Magazine, 2025. Available from: https://sustainabilitymag.com/articles/microsoft-exomad-green-the-worlds-largest-carbon-removal?utm_source [Last accessed on 26 Jan 2026].
62. Fasihi, M.; Breyer, C. Global production potential of green methanol based on variable renewable electricity. Energy. Environ. Sci. 2024, 17, 3503-22.
63. Pio, D.; Vilas-Boas, A.; Rodrigues, N.; Mendes, A. Carbon neutral methanol from pulp mills towards full energy decarbonization: an inside perspective and critical review. Green. Chem. 2022, 24, 5403-28.
64. Energy Transitions Commission. Carbon capture, utilisation and storage in the energy transition: vital but limited, 2022. Available from: https://www.energy-transitions.org/publications/carbon-capture-use-storage-vital-but-limited/ [Last accessed on 26 Jan 2026].
65. International Energy Agency. Massive global growth of renewables to 2030 is set to match entire power capacity of major economies today, moving world closer to tripling goal, 2024. Available from: https://www.iea.org/news/massive-global-growth-of-renewables-to-2030-is-set-to-match-entire-power-capacity-of-major-economies-today-moving-world-closer-to-tripling-goal [Last accessed on 26 Jan 2026].
66. Algburi, S.; Munther, H.; Al-Dulaimi, O.; et al. Green hydrogen role in sustainable energy transformations: a review. Results. Eng. 2025, 26, 105109.
67. Bioenergy International. New data shows growing renewable and low-carbon methanol project pipeline; 2025. Available from: https://bioenergyinternational.com/new-data-shows-growing-renewable-and-low-carbon-methanol-project-pipeline/ [Last accessed on 26 Jan 2026].
68. Hazenberg, W. Green hydrogen: cost and reduction potential, 2024. Available from: https://greenskillsforhydrogen.eu/wp-content/uploads/2024/07/2024-Juni-4-V03-Masterclass-WHB_-Greenskill4h2_Green-Hydrogen-Cost-and-reduction.pdf [Last accessed on 26 Jan 2026].
69. International Energy Agency. Net zero by 2050: a roadmap for the global energy sector, 2021. Available from: https://www.iea.org/reports/net-zero-by-2050 [Last accessed on 26 Jan 2026].





