REFERENCES

1. Malhi, Y.; Franklin, J.; Seddon, N.; et al. Climate change and ecosystems: threats, opportunities and solutions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2020, 375, 20190104.

2. Singh, S.; Kiran, B. R.; Mohan, S. V. Carbon farming: a circular framework to augment CO2 sinks and to combat climate change. Environ. Sci. Adv. 2024, 3, 522-42.

3. Kaur, R.; Kaur, N.; Kumar, S.; Dass, A.; Singh, T. Carbon capture and sequestration for sustainable land use - A review. Ind. J. Agri. Sci. 2023, 93, 124838.

4. Samaraweera, W. G. R. L.; Dharmadasa, R. A. P. I. S.; Kumara, P. H. T.; Bandara, A. S. G. S. Evidence of climate change impacts in Sri Lanka - a review of literature. Sri. Lanka. J. Econ. Res. 2024, 11, 69-94.

5. Ranasinghe, H. Carbon net-zero by 2050: benefits, challenges and way forward. J. Trop. For. Sci. 2022, 12.

6. Atapattu, A. J.; Ranasinghe, C. S.; Nuwarapaksha, T. D.; Udumann, S. S.; Dissanayaka, N. S. Sustainable agriculture and sustainable development goals (SDGs). In: Garwi, J.; Masengu, R.; Chiwaridzo, O. T.; editors. Emerging technologies and marketing strategies for sustainable agriculture; 2024. pp. 1-27.

7. Atapattu, A. A. A. J.; Pushpakumara, D. K. N. G.; Rupasinghe, W. M. D.; Senarathne, S. H. S.; Raveendra, S. A. S. T. Potential of Gliricidia sepium as a fuelwood species for sustainable energy generation in Sri Lanka. Agric. Res. J. 2017, 54, 34-9.

8. Dissanayaka, D. M. N. S.; Dissanayake, D. K. R. P. L.; Udumann, S. S.; Nuwarapaksha, T. D.; Atapattu, A. J. Agroforestry - a key tool in the climate-smart agriculture context: a review on coconut cultivation in Sri Lanka. Front. Agron. 2023, 5, 1162750.

9. Nuwarapaksha, T. D.; Udumann, S. S.; Dissanayaka, D.; Dissanayake, D.; Atapattu, A. J. Coconut based multiple cropping systems: an analytical review in Sri Lankan coconut cultivations. Circ. Agric. Syst. 2022, 2, 1-7.

10. Atapattu, A. J. Gliricidia as a beneficial crop in resource-limiting agroforestry systems in Sri Lanka. Ind. J. Agrofor. 2023, 25, 12-8. Available from: https://epubs.icar.org.in/index.php/IJA/article/view/129957 [Last accessed on 18 Jan 2025]

11. Dissanayaka, N. S.; Udumann, S. S.; Nuwarapaksha, T. D.; Atapattu, A. J. Agroforestry: an avenue for resilient and productive farming through integrated crops and livestock production; 2023, pp. 115-36.

12. Nuwarapaksha, T. D.; Udumann, S. S.; Dissanayaka, N. S.; Atapattu, A. J. Coconut-based livestock farming: a sustainable approach to enhancing food security in Sri Lanka; 2023, pp. 197-213.

13. Atapattu, A. J.; Udumann, S. S. Leveraging agroforestry principles for nature-based climate-smart solutions for coconut cultivation. In: Leal Filho, W.; Nagy, G. J.; Ayal, D. Y.; editors. Handbook of nature-based solutions to mitigation and adaptation to climate change. Cham: Springer International Publishing; 2023. pp. 1-28.

14. Subramanian, P.; Gupta, A.; Gopal, M.; et al. Coconut (Cocos nucifera L.). In: Thomas GV, Krishnakumar V, editors. Soil health management for plantation crops. Singapore: Springer Nature; 2024. pp. 37-109.

15. Ali, S.; Khan, S. M.; Abdullah, A.; Rana, M.; Ahmad, Z. Chapter 20 - Dryland agroforestry: mitigating role in reducing air pollution and climate change impacts. In: Agroforestry for carbon and ecosystem management. Elsevier; 2024. pp. 271-82.

16. Issa, S.; Dahy, B.; Ksiksi, T.; Saleous, N. A review of terrestrial carbon assessment methods using geo-spatial technologies with emphasis on arid lands. Remote. Sens. 2020, 12, 2008.

17. Sebrala, H.; Abich, A.; Negash, M.; Asrat, Z.; Lojka, B. Tree allometric equations for estimating biomass and volume of Ethiopian forests and establishing a database: review. Trees. Forests. People. 2022, 9, 100314.

18. Mahmood, H.; Siddique, M. R. H.; Islam, S. M. Z.; et al. Applicability of semi-destructive method to derive allometric model for estimating aboveground biomass and carbon stock in the Hill zone of Bangladesh. J. For. Res. 2020, 31, 1235-45.

19. Sun, W.; Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2020, 7, 4.

20. Le Roux, X.; Lacointe, A.; Escobar-Gutiérrez, A.; Le Dizès, S. Carbon-based models of individual tree growth: a critical appraisal. Ann. For. Sci. 2001, 58, 469-506.

21. Raveendra, S. A. S. T.; Atapattu, A. A. A. J.; Senarathne, S. H. S.; Ranasinghe, C. S.; Weerasinghe, K. W. L. K. Evaluation of the carbon sequestration potential of intercropping systems under coconut in Sri Lanka. Int. J. Geol. Earth. Environ. Sci. 2017, 7, 1-7. Available from: https://www.cibtech.org/J-GEOLOGY-EARTH-ENVIRONMENT/PUBLICATIONS/2017/VOL_7_NO_1/01-JGEE-001-ATAPATTU-EVALUATION.pdf [Last accessed on 18 Jan 2025]

22. Raveendra, S. A. S. T.; Nissanka, S. P.; Somasundaram, D.; Atapattu, A. J.; Mensah, S. Coconut-Gliricidia mixed cropping systems improve soil nutrients in dry and wet regions of Sri Lanka. Agroforest. Syst. 2021, 95, 307-19.

23. Nuwarapaksha, T. D.; Udumann, S. S.; Atapattu, A. J. Fostering food and nutritional security through agroforestry practices. In: Raj, A.; Jhariya, M. K.; Banerjee, A.; Jha, R. K.; Singh, K. P.; editors. Agroforestry. Wiley; 2024. pp. 285-318.

24. Agro-ecological regions of Sri Lanka; 2003. Available from: https://doa.gov.lk/nrmc-downloads/ [Last accessed on 22 Jan 2025].

25. Panabokke, C. R. Soils and agro-ecological environments of Sri Lanka; 1996. pp. 133-4. Available from: https://www.amazon.com/Soils-Agro-Ecological-Environments-Sri-Lanka/dp/9555900051 [Last accessed on 18 Jan 2025].

26. Senarathne, S. H. S.; Udumann, S. S. Evaluation of coconut based anacardium occidentale agroforestry system to improve the soil properties of coconut growing lands in wet, Intermediate and Dry Zone of Sri Lanka. Coconut. Res. Dev. J. 2020, 35, 1-10.

27. Krishnakumar, V.; Thampan, P. K.; Nair, M. A. The coconut palm (Cocos nucifera L.) - research and development perspectives. Singapore: Springer; 2018. Available from: https://link.springer.com/book/10.1007/978-981-13-2754-4 [Last accessed on 18 Jan 2025].

28. George, M. L. C.; Bourdeix, R.; Konan, J. L. Regeneration guidelines: coconut. In: Crop-specific regeneration guidelines. Available from: https://www.researchgate.net/publication/292966940_Regeneration_guidelines_coconut [Last accessed on 18 Jan 2025].

29. Ranasinghe, C. S. Report of the plant physiology division. In: Jayasekara C, editor, Annual report of the coconut research institute. Bandirippuwa Estate, Lunuwila: Coconut Research Institute; 2008, pp. 198-207.

30. Friend, D.; Corley, R. H. V. Measuring coconut palm dry matter production. Exp. Agric. 1994, 30, 223-35.

31. Matthews, G. The carbon content of trees. Forestry Commission; 1993. Available from: https://books.google.com/books/about/The_Carbon_Content_of_Trees.html?id=2KUsAQAAMAAJ [Last accessed on 18 Jan 2025].

32. Navarro, M. N. V.; Jourdan, C.; Sileye, T.; et al. Fruit development, not GPP, drives seasonal variation in NPP in a tropical palm plantation. Tree. Physiol. 2008, 28, 1661-74.

33. Coconut Research Institute of Sri Lanka. Report of the agronomy division. In: annual report of the coconut research institute Bandirippuwa Estate, Lunuwila, Sri Lanka; 2022, pp. 386-8. Available from: https://cri.gov.lk/en/ar-publications/ [Last accessed on 22 Jan 2025].

34. Menon, K. P. V.; Pandalai, K. M. The coconut palm. A monograph. Ernakulam, India. 1958. Available from: https://catalogue.nla.gov.au/catalog/1014119 [Last accessed on 18 Jan 2025].

35. Niral, V.; Jerard, B. A. Botany, origin and genetic resources of coconut. In: Krishnakumar, V.; Thampan, P.; Nair, M.; editors, The Coconut Palm (Cocos nucifera L.) - Research and development perspectives. Singapore: Springer; 2018, pp. 57-111.

36. Chan, E.; Elevitch, C. R. Cocos nucifera (coconut). Species profiles for Pacific Island agroforestry; 2006. Available from: https://raskisimani.com/wp-content/uploads/2013/01/cocos-nucifera-coconut.pdf [Last accessed on 18 Jan 2025].

37. Walkley, A.; Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil. Sci. 1934, 37, 29-38.

38. De Silva MAT, Abeyawardena V. Leaf growth in relation to age and the bearing status of coconut palms; 1970, pp. 59-62. Available from: https://dl.nsf.gov.lk/items/8bc0421e-8898-4bce-a61e-5d8cd6198dca [Last accessed on 18 Jan 2025].

39. Ella, A.; Blair, G. J.; Stür, W. W. Effect of age of forage tree legumes at the first cutting on subsequent production. Australia: Tropical Grasslands; 1991, pp. 275-80. Available from: https://fao-agris-review-search-zwcsjik2pa-uc.a.run.app/search/en/providers/122478/records/6477598c5eb437ddff764e95 [Last accessed on 18 Jan 2025]

40. Mulyana, B.; Soeprijadi, D.; Purwanto, R. H. Development of bioenergy plantation in Indonesia: yield regulation and above-ground carbon storage in Gliricidia (Gliricidia sepium) plantation. E3S. Web. Conf. 2020, 202, 08009.

41. Desta, G.; Kassawmar, T.; Tadesse, M.; Zeleke, G. Extent and distribution of surface soil acidity in the rainfed areas of Ethiopia. Land. Degrad. Dev. 2021, 32, 5348-59.

42. Gasim, M. B.; Khalid, N. A.; Muhamad, H. The influence of tidal activities on water quality of Paka River Terengganu, Malaysia. Malays. J. Anal. Sci. 2015, 19, 979-90. Available from: http://www.ukm.my/mjas/v19_n5/pdf/MuhammadBarzani_19_5_9.pdf [Last accessed on 18 Jan 2025]

43. Maina, M.; Maidugu, D. W.; Adamu, A.; Balami, S. D. Compaction as affected by bulk density and dry density of a soil. IOSR. J. Appl. Phys. 2020, 12, 6-13. Available from: https://www.iosrjournals.org/iosr-jap/papers/Vol12-issue4/Series-2/B1204020613.pdf [Last accessed on 18 Jan 2025]

44. Bockheim, J. G.; Hartemink, A. E.; Huang, J. Distribution and properties of sandy soils in the conterminous USA - A conceptual thickness model, and taxonomic analysis. CATENA. 2020, 195, 104746.

45. Saha, S. K.; Ramachandran, N. P. K.; Nair, V. D.; Mohan Kumar, B. Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems. Plant. Soil. 2010, 328, 433-46.

46. Ranasinghe, C. S.; Thimothias, K. S. H. Estimation of carbon sequestration potential in coconut plantations under different agro-ecological regions and land suitability classes. J. Natl. Sci. Found. Sri. Lanka. 2012, 40, 77-93.

47. Doetterl, S.; Berhe, A. A.; Nadeu, E.; Wang, Z.; Sommer, M.; Fiener, P. Erosion, deposition and soil carbon: a review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes. Earth. Sci. Rev. 2016, 154, 102-22.

48. Singh, M.; Sarkar, B.; Biswas, B.; Bolan, N. S.; Churchman, G. J. Relationship between soil clay mineralogy and carbon protection capacity as influenced by temperature and moisture. Soil. Biol. Biochem. 2017, 109, 95-106.

49. Rathnayake, H.; Mizunoya, T. A study on GHG emission assessment in agricultural areas in Sri Lanka: the case of Mahaweli H agricultural region. Environ. Sci. Pollut. Res. Int. 2023, 30, 88180-96.

50. Ozili, P. K. The acceptable R-square in empirical modelling for social science research. In: Saliya, C. A.; editor. Social Research Methodology and Publishing Results; 2023. pp. 134-43.

51. Segura, M.; Kanninen, M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in costa rica. Biotropica 2005, 37, 2-8.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/