REFERENCES
1. United Nations. World population prospects 2022: summary of results. Available from: https://www.un.org/development/desa/pd/content/World-Population-Prospects-2022 [Last accessed on 25 July 2023].
2. United Nations Department of Economic and Social Affairs. The world population prospects: 2015 revision. Available from: https://www.un.org/en/development/desa/publications/world-population-prospects-2015-revision.html [Last accessed on 25 July 2023].
3. Jägermeyr J. Agriculture’s historic twin-challenge toward sustainable water use and food supply for all. Front Sustain Food Syst 2020;4:35.
4. O’neill DW, Fanning AL, Lamb WF, Steinberger JK. A good life for all within planetary boundaries. Nat Sustain 2018;1:88-95.
6. Yu L, Liu S, Wang F, et al. Strategies for agricultural production management based on land, water and carbon footprints on the Qinghai-Tibet Plateau. J Clean Prod 2022;362:132563.
7. FAO. Statistical yearbooks “world food and agriculture” 2021. Available from: https://reliefweb.int/sites/reliefweb.int/files/resources/cb4477en.pdf [Last accessed on 25 July 2023].
8. Timperley J. CCC: farming needs a ‘revolution’ for UK to meet climate goals. Available from: https://www.carbonbrief.org/ccc-farming-needs-revolution-for-uk-meet-climate-goals [Last accessed on 25 July 2023].
9. IPCC. Special report: global warming of 1.5 °C. Available from: https://www.ipcc.ch/sr15/.2018-10-08/2019-03-01 [Last accessed on 25 July 2023].
10. CAT. Climate action tracker. Available from: https://climateactiontracker.org/ [Last accessed on 25 July 2023].
11. DEFR. The second national adaptation programme 2018 to 2023. Available from: https://navigator.health.org.uk/theme/climate-change-second-national-adaptation-programme-2018-2023#:~:text=In%202018%2C%20the%20Department%20for%20Environment%2C%20Food%20%26,of%20climate%20change%20over%20the%20following%205%20years [Last accessed on 25 July 2023].
12. Wang J, Zhang Z, Liu Y. Spatial shifts in grain production increases in China and implications for food security. Land Use Policy 2018;74:204-13.
13. Xu B, Lin B. Factors affecting CO2 emissions in China’s agriculture sector: evidence from geographically weighted regression model. Energy Policy 2017;104:404-14.
14. Bai Y, Ruan X, Xie X, Yan Z. Antibiotic resistome profile based on metagenomics in raw surface drinking water source and the influence of environmental factor: a case study in Huaihe River Basin, China. Environ Pollut 2019;248:438-47.
15. Adenle AA, Manning DT, Arbiol J. Mitigating climate change in africa: barriers to financing low-carbon development. World Dev 2017;100:123-32.
16. López LA, Arce G, Kronenberg T, Rodrigues JF. Trade from resource-rich countries avoids the existence of a global pollution haven hypothesis. J Clean Prod 2018;175:599-611.
18. Banerjee S, Khan MA, Iftikhar ul Husnain M. Searching appropriate system boundary for accounting India’s emission inventory for the responsibility to reduce carbon emissions. J Environ Manag 2021;295:112907.
19. Wang Y, Lai N, Mao G, et al. Air pollutant emissions from economic sectors in China: a linkage analysis. Ecol Indic 2017;77:250-60.
20. Cabernard L, Pfister S. A highly resolved MRIO database for analyzing environmental footprints and Green Economy Progress. Sci Total Environ 2021;755:142587.
21. Rees WE. Ecological footprints and appropriated carrying capacity: what urban economics leaves out. Environ Urban 1992;4:121-30.
22. Wackernagel M, Rees WE. Perceptual and structural barriers to investing in natural capital: economics from an ecological footprint perspective. Ecol Econ 1997;20:3-24.
23. Høgevold NM. A corporate effort towards a sustainable business model: a case study from the Norwegian furniture industry. Eur Bus Rev 2011;23:392-400.
24. British Petroleum. What is a carbon footprint? Available from: https://www.bp.com/ [Last accessed on 25 July 2023].
25. Wiedmann T, Minx J. A Definition of carbon footprint. J R Soc Med 2009;92:193-5. Available from: https://www.researchgate.net/publication/247152314_A_Definition_of_Carbon_Footprint [Last accessed on 27 July 2023]
26. Peters GP. Carbon footprints and embodied carbon at multiple scales. Curr Opin Environ Sustain 2010;2:245-50.
27. Pandey D, Agrawal M, Pandey JS. Carbon footprint: current methods of estimation. Environ Monit Assess 2011;178:135-60.
28. Fang K, Heijungs R, de Snoo GR. Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: overview of a footprint family. Ecol Indic 2014;36:508-18.
29. Mosier A, Halvorson A, Peterson G, Robertson G, Sherrod L. Measurement of net global warming potential in three agroecosystems. Nutr Cycl Agroecosyst 2005;72:67-76.
30. Mosier AR, Halvorson AD, Reule CA, Liu XJ. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J Environ Qual 2006;35:1584-98.
31. Ray RL, Griffin RW, Fares A, et al. Soil CO2 emission in response to organic amendments, temperature, and rainfall. Sci Rep 2020;10:5849.
32. Xue J, Liu S, Chen Z, et al. Assessment of carbon sustainability under different tillage systems in a double rice cropping system in Southern China. Int J Life Cycle Assess 2014;19:1581-92.
33. Wu J, Yang H. A review of measurement methods of agricultural net carbon sink. J Agric Econ 2020;402:29-31.
34. Liu X, Xu W, Li Z, Chu Q, Yang X, Chen F. Farmland ecosystem carbon footprint method: misunderstanding, improvement and application: analysis of carbon efficiency of intensive farming in China(continued). Chin J Agric Resour Reg Plan 2014;35:1-7. (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7M8Tu7YZds8-u32u7_exfY3BOtVFzGZs-g0jo33TDYytKa_BtbSqBTERwIIa-sNrv&uniplatform=NZKPT [Last accessed on 27 July 2023]
35. Zhang D, Zhang W. Low carbon agriculture and a review of calculation methods for crop production carbon footprint accounting. Resour Sci 2016;38:1395-405. (In Chinese)
36. Davis SJ, Caldeira K, Matthews HD. Future CO2 emissions and climate change from existing energy infrastructure. Science 2010;329:1330-3.
37. Pan X, Wang Y, Shen Z, Song M. Technological progress on embodied carbon emissions in G7 countries’ exports: a structural decomposition analysis. J Clean Prod 2022;372:133800.
38. Lin B, Xu M. Does China become the “pollution heaven” in South-South trade? Evidence from Sino-Russian trade. Sci Total Environ 2019;666:964-74.
39. Hu YH, Zhang KY, Hu NY, Wu LP. Review on measurement of agricultural carbon emission in China. Chin J Eco-Agric 2023;31:163-76. (In Chinese)
40. Rojas C, Muñiz I, Quintana M, et al. Short run “rebound effect” of COVID on the transport carbon footprint. Cities 2022;131:104039.
41. Xia X, Li P, Xia Z, Wu R, Cheng Y. Life cycle carbon footprint of electric vehicles in different countries: a review. Sep Purif Technol 2022;301:122063.
42. Yu X, Jiang Z, Wang J, Lin J, Liu Y, Yang J. [Effect of reduced nitrogen fertilization on carbon footprint in spring maize-late rice production system]. Ying Yong Sheng Tai Xue Bao 2019;30:1397-403. (In Chinese)
43. Pang R, Wang M, Kong J, Li J, Wang M, Zou X. Carbon and nitrogen footprint of different peanut rotation systems in Hubei Province, China. Ying Yong Sheng Tai Xue Bao 2021;32:3997-4003. (In Chinese)
44. Zhu Q, Duan J, Qian Y, Lou Y. Carbon footprint of organic rice based on life cycle theory - Case of mountain organic rice in Jinzhai county. 2019. Available from: http://cnki.cqgmy.edu.cn/KCMS/detail/detailall.aspx?filename=ghzh201910007&dbcode=CJFQ&dbname=CJFD2019 [Last accessed on 25 July 2023].
45. Li C, Luo T, Yan G, Xu S, Zong J, Shao Y. System, different ecological regions in henan wheat - corn farmland carbon footprint analysis. J Ecol Environ 2020;29:918-25. (In Chinese)
46. Schmidt H. Carbon footprinting, labelling and life cycle assessment. Int J Life Cycle Assess 2009;14:6-9.
47. ISO. Greenhouse gases - carbon footprint of products - requirements and guidelines for quantification and communication. Geneva, Switzerland: ISO, 2013.
48. Lenzen M, Murray SA. A modified ecological footprint method and its application to Australia. Ecol Econ 2001;37:229-55.
49. Zhang Q, Fang K, Xu M, Liu Q. Review of carbon footprint research based on input-output analysis. J Nat Resour 2018;33:696-708. (In Chinese)
50. Zhang T. Policy intervention and agricultural growth in China: 1988-2013. Nankai Econ Res 2018:5. (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XUqHJts_sZgHpn6yh1dpc2CyAjC2M4wmJv5Sy2mwmOWu&uniplatform=NZKPT [Last accessed on 27 July 2023]
51. da Silva LP, Esteves da Silva JCG. Evaluation of the carbon footprint of the life cycle of wine production: a review. Clean Cir Bio-Econ 2022;2:100021.
52. Leontief WW. Quantitative input and output relations in the economic systems of the United States. Rev Econ Stat 1936;18:105-25.
55. Fang K. A review of footprints family studies. Acta Ecol Sinica 2015;35:7974-86. (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ijP0rjQD-AVm8oHBO0FTadg6LjQjGLFAvtg9mtrq1208sCvE3QdqmmAdOQkuMw3KN&uniplatform=NZKPT [Last accessed on 27 July 2023]
56. Ali Y, Pretaroli R, Socci C, Severini F. Carbon and water footprint accounts of Italy: a multi-region input-output approach. Renew Sustain Energy Rev 2018;81:1813-24.
57. Wiedmann T. A review of recent multi-region input-output models used for consumption-based emission and resource accounting. Ecol Econ 2009;69:211-22.
58. Lenzen M, Wood R, Wiedmann T. Uncertainty analysis for multi-region input-output models - a case study of the UK’s carbon footprint. Econ Syst Res 2010;22:43-63.
59. Wiedmann KP, Hennigs N, Siebels A. Measuring consumers’ luxury value perception: a cross-cultural framework. Acad Mark Sci 2007;7:1-21. Available from: https://www.proquest.com/docview/200919782 [Last accessed on 25 July 2023]
60. Wiedmann T, Lenzen M, Turner K, Barrett J. Examining the global environmental impact of regional consumption activities - Part 2: review of input-output models for the assessment of environmental impacts embodied in trade. Ecol Econ 2007;61:15-26.
61. Wiedmann T, Lenzen M. Environmental and social footprints of international trade. Nat Geosci 2018;11:314-21.
62. Martinez S, Marchamalo M, Alvarez S. Organization environmental footprint applying a multi-regional input-output analysis: a case study of a wood parquet company in Spain. Sci Total Environ 2018;618:7-14.
63. Zhan L, Lei Y, Li L, Ge J. Interprovincial transfer of ecological footprint among the region of Jing-Jin-Ji and other provinces in China: a quantification based on MRIO model. J Clean Prod 2019;225:304-14.
64. Wang H, Pan C, Wang Q, Zhou P. Assessing sustainability performance of global supply chains: an input-output modeling approach. Eur J Oper Res 2020;285:393-404.
65. Suh S. Functions, commodities and environmental impacts in an ecological-economic model. Ecol Econ 2004;48:451-67.
66. Hertwich EG, Peters GP. Carbon footprint of nations: a global, trade-linked analysis. Environ Sci Technol 2009;43:6414-20.
67. Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc Natl Acad Sci USA 2004;101 Suppl 1:5303-10.
68. MIT climate portal. Food systems and agriculture. Available from: https://climate.mit.edu/explainers/food-systems-and-agriculture [Last accessed on 25 July 2023].
69. Li Q, Yang W, Zou C, Xu X, Li J, Zhang Z. Study on carbon footprint of main field crops in coastal reclamation area: a case study of Yancheng City, Jiangsu Province. Chin J Agric Resour Reg Plan 2019;40:188-98. (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iLik5jEcCI09uHa3oBxtWoCpg29VAgAjF0TecuXNXS2Liblkg4UnBbCZlz0II3Hxs&uniplatform=NZKPT&src=copy [Last accessed on 27 July 2023]
70. Hao X. Spatio-temporal changes of carbon source/sink in agricultural ecosystem based on carbon footprint in Heilongjiang reclamation area. Chin J Agric Resour Reg Plan 2022;43:64-73. (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7iJTKGjg9uTdeTsOI_ra5_XS7gnrJNwHvxLZZlSxubZS5M0vIIFQ0oN8O0ZLVBf7-F&uniplatform=NZKPT&src=copy [Last accessed on 27 July 2023]
71. Silalertruksa T, Gheewala SH. Land-water-energy nexus of sugarcane production in Thailand. J Clean Prod 2018;182:521-8.
72. Rana RL, Bux C, Lombardi M. Carbon footprint of the globe artichoke supply chain in Southern Italy: from agricultural production to industrial processing. J Clean Prod 2023;391:136240.
73. Do P, Tian F, Zhu T, et al. Exploring synergies in the water-food-energy nexus by using an integrated hydro-economic optimization model for the Lancang-Mekong River basin. Sci Total Environ 2020;728:137996.
74. Zhai Y, Zhang T, Bai Y, et al. Energy and water footprints of cereal production in China. Resour Conserv Recycl 2021;164:105150.
75. Sharno MA, Hiloidhari M. Life cycle carbon, energy, water, and landuse footprints of agricultural residue-based biojet fuel in Bangladesh. Bioresou Technol Rep 2022;20:101234.
76. Núñez-cárdenas P, San Miguel G, Báñales B, Álvarez S, Diezma B, Correa EC. The carbon footprint of stone fruit production: comparing process-based life cycle assessment and environmentally extended input-output analysis. J Clean Prod 2022;381:135130.
77. Mantoam EJ, Angnes G, Mekonnen MM, Romanelli TL. Energy, carbon and water footprints on agricultural machinery. Biosyst Eng 2020;198:304-22.
78. López L, Cadarso M, Gómez N, Tobarra M. Food miles, carbon footprint and global value chains for Spanish agriculture: assessing the impact of a carbon border tax. J Clean Prod 2015;103:423-36.
79. Mazzetto AM, Falconer S, Ledgard S. Mapping the carbon footprint of milk production from cattle: a systematic review. J Dairy Sci 2022;105:9713-25.
80. Vida E, Tedesco DEA. The carbon footprint of integrated milk production and renewable energy systems - a case study. Sci Total Environ 2017;609:1286-94.
81. Wilkes A, Wassie S, Odhong’ C, Fraval S, van Dijk S. Variation in the carbon footprint of milk production on smallholder dairy farms in central Kenya. J Clean Prod 2020;265:121780.
82. Froldi F, Lamastra L, Corrado S, Moschini M. Carbon footprint of raw milk for direct human consumption produced in Po Valley: data input uncertainties and effect on output variance. Environ Challenges 2022;8:100536.
83. Arrieta EM, Aguiar S, González Fischer C, et al. Environmental footprints of meat, milk and egg production in Argentina. J Clean Prod 2022;347:131325.
84. Röös E, Bajželj B, Smith P, Patel M, Little D, Garnett T. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob Environ Chang 2017;47:1-12.
85. Poore J, Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science 2018;360:987-92.
86. Sun J, Liu Y, Zhao R, et al. Analysis of water-soil-carbon footprint flow in China’s interprovincial agriculture based on input-output. Acta Ecol Sinica 2022;42:9615-26. (In Chinese). Available from: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7ioT0BO4yQ4m_mOgeS2ml3UD46LNBMcs31ZAHEHukfgPVvYo4wn1rc0_u17AlcOaGh&uniplatform=NZKPT&src=copy [Last accessed on 27 July 2023]
87. Jiao W, Liu X, He S. Establishing an ecological monitoring system for national parks in China: a theoretical framework. Ecol Indic 2022;143:109414.
88. Hedayati M, Brock PM, Nachimuthu G, Schwenke G. Farm-level strategies to reduce the life cycle greenhouse gas emissions of cotton production: an Australian perspective. J Clean Prod 2019;212:974-85.
89. Habibi E, Niknejad Y, Fallah H, Dastan S, Tari DB. Life cycle assessment of rice production systems in different paddy field size levels in north of Iran. Environ Monit Assess 2019;191:202.
90. Owen A, Scott K, Barrett J. Identifying critical supply chains and final products: an input-output approach to exploring the energy-water-food nexus. Appl Energy 2018;210:632-42.
91. Li J, Gao M, Luo E, Wang J, Zhang X. Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China. Energy Econ 2023;119:106576.
92. Fan X, Zhang W, Chen W, Chen B. Land-water-energy nexus in agricultural management for greenhouse gas mitigation. Appl Energy 2020;265:114796.
93. Feng M, Chen Y, Duan W, Zhu Z, Wang C, Hu Y. Water-energy-carbon emissions nexus analysis of crop production in the Tarim river basin, Northwest China. J Clean Prod 2023;396:136566.
94. Bukhary S, Batista J, Ahmad S. Water-energy-carbon nexus approach for sustainable large-scale drinking water treatment operation. J Hydrol 2020;587:124953.
95. Chen X, Ma C, Zhou H, et al. Identifying the main crops and key factors determining the carbon footprint of crop production in China, 2001-2018. Resour Conserv Recycl 2021;172:105661.
96. Saray M, Baubekova A, Gohari A, Eslamian SS, Klove B, Torabi Haghighi A. Optimization of water-energy-food nexus considering CO2 emissions from cropland: a case study in northwest Iran. Appl Energy 2022;307:118236.
97. Yan J, Lu Q, Chen L, Broyd T, Pitt M. SeeCarbon: a review of digital approaches for revealing and reducing infrastructure, building and City’s carbon footprint. IFAC-PapersOnLine 2022;55:223-8.
98. Chen C, Chai KK, Lau E. AI-assisted approach for building energy and carbon footprint modeling. Energy 2021;5:100091.