REFERENCES

1. O’laughlin J, Mcelligott K. Biochar for environmental management: an introduction. Sci Technol 2009;11:535-6.

2. Li D, Zhao R, Peng X, et al. Biochar-related studies from 1999 to 2018: a bibliometrics-based review. Environ Sci Pollut Res Int 2020;27:2898-908.

3. Borchard N, Schirrmann M, Cayuela ML, et al. Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Total Environ 2019;651:2354-64.

4. Dumortier J, Dokoohaki H, Elobeid A, Hayes DJ, Laird D, Miguez FE. Global land-use and carbon emission implications from biochar application to cropland in the United States. J Clean Prod 2020;258:120684.

5. Lehmann J, Cowie A, Masiello CA, et al. Biochar in climate change mitigation. Nat Geosci 2021;14:883-92.

6. Joseph S, Cowie AL, van Zwieten L, et al. How biochar works, and when it doesn’t: a review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy 2021;13:1731-64.

7. Schmidt H, Kammann C, Hagemann N, et al. Biochar in agriculture - a systematic review of 26 global meta-analyses. GCB Bioenergy 2021;13:1708-30.

8. Scott HL, Ponsonby D, Atkinson CJ. Biochar: an improver of nutrient and soil water availability - what is the evidence? CABI Rev 2014;2014:1-19.

9. Razzaghi F, Obour PB, Arthur E. Does biochar improve soil water retention? Geoderma 2020;361:114055.

10. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D. Biochar effects on soil biota - a review. Soil Biol Biochem 2011;43:1812-36.

11. Palansooriya KN, Wong JTF, Hashimoto Y, et al. Response of microbial communities to biochar-amended soils: a critical review. Biochar 2019;1:3-22.

12. Mukherjee A, Lal R. The biochar dilemma. Soil Res 2014;52:217.

13. Brtnicky M, Datta R, Holatko J, et al. A critical review of the possible adverse effects of biochar in the soil environment. Sci Total Environ 2021;796:148756.

14. Glaser B, Guggenberger G, Zech W. Black carbon in sustainable soils of the Brazilian Amazon region. In: Swift RS, Spark KM, editors. Understanding & managing organic matter in soils: sediments & waters. St. Paul, MN: International Humic Substances Society, 2001. p. 359-364.

15. Glaser B, Haumaier L, Guggenberger G, Zech W. The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001;88:37-41.

16. Nair PKR, Kumar BM, Nair VD. An introduction to agroforestry: four decades of scientific developments, 2nd ed. The Netherlands: Springer Nature, 2021.

17. Glaser B. Prehistorically modified soils of central Amazonia: a model for sustainable agriculture in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 2007;362:187-96.

18. Novak JM, Lima IM, Xing B et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann Environ Sci 2009;3:195-206. Available from: https://openjournals.neu.edu/aes/journal/article/view/v3art5 [Last accessed on 4 Nov 2022]

19. Ippolito JA, Novak JM, Busscher WJ, Ahmedna M, Rehrah D, Watts DW. Switchgrass biochar affects two aridisols. J Environ Qual 2012;41:1123-30.

20. Nair VD, Nair PKR, Dari B, Freitas AM, Chatterjee N, Pinheiro FM. Biochar in the agroecosystem-climate-change-sustainability nexus. Front Plant Sci 2017;8:2051.

21. Biederman LA, Harpole WS. Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 2013;5:202-14.

22. Glaser B, Lehr VI. Biochar effects on phosphorus availability in agricultural soils: a meta-analysis. Sci Rep 2019;9:9338.

23. Gao S, DeLuca TH, Cleveland CC. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Sci Total Environ 2019;654:463-82.

24. Zhou H, Zhang D, Wang P, et al. Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: a meta-analysis. Agric Ecosyst Environ 2017;239:80-9.

25. Mukherjee A, Lal R. Biochar impacts on soil physical properties and greenhouse gas emissions. Agronomy 2013;3:313-39.

26. Blanco-Canqui H. Biochar and soil physical properties. Soil Sci Soc Am J 2017;81:687-711.

27. Mukherjee A, Zimmerman AR, Harris W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011;163:247-55.

28. Tomczyk A, Sokołowska Z, Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 2020;19:191-215.

29. Ippolito JA, Cui L, Kammann C, et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2020;2:421-38.

30. Hassan M, Liu Y, Naidu R, et al. Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: a meta-analysis. Sci Total Environ 2020;744:140714.

31. Li S, Harris S, Anandhi A, Chen G. Predicting biochar properties and functions based on feedstock and pyrolysis temperature: A review and data syntheses. J Clean Prod 2019;215:890-902.

32. Huang H, Reddy NG, Huang X, et al. Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci Rep 2021;11:7419.

33. Nair VD. Soil phosphorus saturation ratio for risk assessment in land use systems. Front Environ Sci 2014:2.

34. Hossain MK, Strezov V, Chan KY, Ziolkowski A, Nelson PF. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J Environ Manage 2011;92:223-8.

35. Novak JM, Cantrell KB, Watts DW, Busscher WJ, Johnson MG. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. J Soils Sediments 2014;14:330-43.

36. Cantrell KB, Ducey T, Ro KS, Hunt PG. Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 2008;99:7941-53.

37. Ro KS, Cantrell KB, Hunt PG. High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind Eng Chem Res 2010;49:10125-31.

38. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 2012;107:419-28.

39. Sharpley A, Moyer B. Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual 2000;29:1462-9.

40. Freitas AM, Nair VD, Harris WG, Mosquera-Losada MA, Ferreiro-Domínguez N. Pyrolysis-induced phosphorus transformations for biosolids from diverse sources . J Environ Qual 2022; doi: 10.1002/jeq2.20433.

41. Lehmann J, da Silva Jr JP, Steiner C, et al. Nutrient availability and leaching in an archaeological anthrosol and a ferralsol of the central amazon basin: fertilizer, manure and charcoal amendments. Plant Soil 2003;249:343-57.

42. Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WE, Zech W. Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutri Soil Sci 2008;171:893-9.

43. Sika MP, Hardie AG. Effect of pine wood biochar on ammonium nitrate leaching and availability in a South African sandy soil: biochar reduces N leaching and availability. Eur J Soil Sci 2014;65:113-9.

44. Freitas AM, Nair VD, Harris WG. Biochar as influenced by feedstock variability: implications and opportunities for phosphorus management. Front Sustain Food Syst 2020;4:510982.

45. Angst TE, Sohi SP. Establishing release dynamics for plant nutrients from biochar. GCB Bioenergy 2013;5:221-6.

46. Mukherjee A, Zimmerman AR. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar-soil mixtures. Geoderma 2013;193-194:122-30.

47. Enaime G, Lübken M. Agricultural Waste-based biochar for agronomic applications. Appl Sci 2021;11:8914.

48. Yrjälä K, Ramakrishnan M, Salo E. Agricultural waste streams as resource in circular economy for biochar production towards carbon neutrality. Curr Opin Environ Sustain 2022;26:100339.

49. Le VS, Herrmann L, Hudek L, Nguyen TB, Bräu L, Lesueur D. How application of agricultural waste can enhance soil health in soils acidified by tea cultivation: a review. Environ Chem Lett 2022;20:813-39.

50. Xu X, Cheng K, Wu H, Sun J, Yue Q, Pan G. Greenhouse gas mitigation potential in crop production with biochar soil amendment-a carbon footprint assessment for cross-site field experiments from China. GCB Bioenergy 2019;11:592-605.

51. Shackley S, Ruysschaert G, Zwart K, Glaser B. Biochar in European soils and agriculture. Taylor: Routledge, 2016.

52. Jeffery S, Verheijen F, van der Velde M, Bastos A. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 2011;144:175-87.

53. Jeffery S, Abalos D, Prodana M, et al. Biochar boosts tropical but not temperate crop yields. Environ Res Lett 2017;12:053001.

54. Tryon EH. Effect of charcoal on certain physical, chemical, and biological properties of forest soils. Ecol Monogr 1948;18:81-115.

55. Dari B, Nair VD, Harris WG, Nair P, Sollenberger L, Mylavarapu R. Relative influence of soil- vs. biochar properties on soil phosphorus retention. Geoderma 2016;280:82-7.

56. Chatterjee N, Dari B, Nair VD, Nair PKR. Phosphorus sorption behavior in biochar-amended soils. ASA/CSSA/SSSA Meetings, Minneapolis, MI USA. November 2015.

57. USEPA 2007; Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2005. EPA 430-R-07-002; Washington, DC: U.S. Environmental Protection Agency, 2007.

58. Snyder C, Bruulsema T, Jensen T, Fixen P. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric Ecosyst Environ 2009;133:247-66.

59. Gan Y, Liang C, Hamel C, Cutforth H, Wang H. Strategies for reducing the carbon footprint of field crops for semiarid areas: a review. Agron Sustain Dev 2011;31:643-56.

60. Chai R, Ye X, Ma C, et al. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag 2019;14:20.

61. Sohi S, Lopez-Capel E, Krull E, Bol R. Biochar, climate change and soil: a review to guide future research. Australia: Commonwealth Scientific and Industrial Research Organisation; 2009.

62. Brewer CE. Biochar characterization and engineering. Graduate Theses and Dissertations. 2012; p. 12284.

63. Onay O, Kockar O. Slow, fast and flash pyrolysis of rapeseed. Renew Energy 2003;28:2417-33.

64. Kambo HS, Dutta A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sust Energy Rev 2015;45:359-78.

65. Laird DA, Brown RC, Amonette JE, Lehmann J. Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod Bioref 2009;3:547-62.

66. Shackley S, Clare A, Joseph S, McCarl B, Schmidt HP. Biochar elemental composition and factors influencing nutrient retention. Biochar for Environmental Management. UK: Routledge, 2015. p. 139-63.

67. Mukherjee A, Zimmerman AR, Hamdan R, Cooper WT. Physicochemical changes in pyrogenic organic matter (biochar) after 15 months of field aging. Solid Earth 2014;5:693-704.

68. Major J, Joseph S. Biochar effects on nutrient leaching. Biochar for environmental management: Science and Technology, e-book, 2009, p. 271.

69. Schmidt CA, Dari B, Chatterjee N, Howlett DS, Nair VD. Nutrient and water retention dynamics of biochar produced from pinyon- juniper forest thinning in nevada. ASA/CSSA/SSSA Meetings, Minneapolis, MI, USA. 2015.

70. Nair VD, Dari B, Chakraborty D, Harris WG. Correspondence of the phosphorus saturation ratio threshold with environmental indicators of phosphorus loss risk. ASA/CSSA/SSSA Meetings, Minneapolis, MI, USA. 2015.

71. Cooperman Y. Biochar and carbon sequestration. Agriculture and natural resources. Berkeley, CA: University of California, 2016.

72. Zimmerman AR, Gao B. The stability of biochar in the environment. Biochar and soil biota, e-book, 2013.

73. Spokas KA. Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manage 2010;1:289-303.

74. Lehmann J, Joseph S. Stability of biochar in soil. Biochar for environmental management: science and technology, e-book, 2009, p. 183-206.

75. Wang J, Xiong Z, Kuzyakov Y. Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 2016;8:512-23.

76. Brassard P, Godbout S, Raghavan V. Soil biochar amendment as a climate change mitigation tool: key parameters and mechanisms involved. J Environ Manage 2016;181:484-97.

77. Du Z, Zhao J, Wang Y, Zhang Q. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system. J Soils Sediments 2017;17:581-9.

78. El-naggar A, Awad YM, Tang X, et al. Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degrad Dev 2018;29:2162-71.

79. Huang R, Tian D, Liu J, Lv S, He X, Gao M. Responses of soil carbon pool and soil aggregates associated organic carbon to straw and straw-derived biochar addition in a dryland cropping mesocosm system. Agric Ecosyst Environ 2018;265:576-86.

80. Chagas JKM, Figueiredo CC, Ramos MLG. Biochar increases soil carbon pools: evidence from a global meta-analysis. J Environ Manage 2022;305:114403.

81. Liu X, Zhang A, Ji C, et al. Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant Soil 2013;373:583-94.

82. Dai Y, Zheng H, Jiang Z, Xing B. Combined effects of biochar properties and soil conditions on plant growth: a meta-analysis. Sci Total Environ 2020;713:136635.

83. Mukherjee A, Lal R, Zimmerman AR. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil. Sci Total Environ 2014;487:26-36.

84. Freitas AM, Nair VD, Sollenberger LE, Harris WG. Poultry litter biochar as an alternative to inorganic phosphorus fertilizer in a year-round cropping system. 21st World Congress of Soil Science. 2018, Rio de Janeiro, Brazil.

85. Bai SH, Omidvar N, Gallart M, et al. Combined effects of biochar and fertilizer applications on yield: a review and meta-analysis. Sci Total Environ 2022;808:152073.

86. Melo LCA, Lehmann J, Carneiro JSDS, Camps-arbestain M. Biochar-based fertilizer effects on crop productivity: a meta-analysis. Plant Soil 2022;472:45-58.

87. Ghodszad L, Reyhanitabar A, Maghsoodi MR, Asgari Lajayer B, Chang SX. Biochar affects the fate of phosphorus in soil and water: a critical review. Chemosphere 2021;283:131176.

88. Hafeez A, Pan T, Tian J, Cai K. Modified biochars and their effects on soil quality: a review. Environments 2022;9:60.

89. Godlewska P, Schmidt HP, Ok YS, Oleszczuk P. Biochar for composting improvement and contaminants reduction. A review. Bioresour Technol 2017;246:193-202.

90. Nguyen MK, Lin C, Hoang HG, et al. Evaluate the role of biochar during the organic waste composting process: a critical review. Chemosphere 2022;299:134488.

91. Oldfield TL, Sikirica N, Mondini C, López G, Kuikman PJ, Holden NM. Biochar, compost and biochar-compost blend as options to recover nutrients and sequester carbon. J Environ Manage 2018;218:465-76.

92. Spokas KA, Cantrell KB, Novak JM, et al. Biochar: a synthesis of its agronomic impact beyond carbon sequestration. J Environ Qual 2012;41:973-89.

93. Majumder S, Neogi S, Dutta T, Powel MA, Banik P. The impact of biochar on soil carbon sequestration: meta-analytical approach to evaluating environmental and economic advantages. J Environ Manage 2019;250:109466.

94. Lorenz K, Lal R. Biochar application to soil for climate change mitigation by soil organic carbon sequestration. J Plant Nutr Soil Sci 2014;177:651-70.

95. Liu Q, Liu B, Ambus P, et al. Carbon footprint of rice production under biochar amendment - a case study in a Chinese rice cropping system. GCB Bioenergy 2016;8:148-59.

96. Solinas S, Tiloca MT, Deligios PA, Cossu M, Ledda L. Carbon footprints and social carbon cost assessments in a perennial energy crop system: a comparison of fertilizer management practices in a Mediterranean area. Agric Syst 2021;186:102989.

97. Leppäkoski L, Marttila MP, Uusitalo V, Levänen J, Halonen V, Mikkilä MH. Assessing the carbon footprint of biochar from willow grown on marginal lands in finland. Sustainability 2021;13:10097.

98. Mohammadi A, Cowie A, Anh Mai TL, et al. Biochar use for climate-change mitigation in rice cropping systems. J Clean Prod 2016;116:61-70.

99. Liu Z, Wang B, Li Z, et al. Plastic film mulch combined with adding biochar improved soil carbon budget, carbon footprint, and maize yield in a rainfed region. Field Crops Res 2022;284:108574.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/