REFERENCES

1. IPCC. Climate change 2014: mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate. Cambridge: Cambridge University Press; 2014.

2. Montagnini F, Nair P. Carbon sequestration: an underexploited environmental benefit of agroforestry systems. Agrofor Syst 2004;61-62:281-95.

3. IPCC. Climate change 2007: mitigation. contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. In Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA editors. Cambridge; New York, NY: Cambridge University Press. https://www.ipcc.ch/site/assets/uploads/2018/03/ar4_wg3_full_report-1.pdf [Last accessed on 6 Dec 2022].

4. IPCC. Use of models and facility-level data in greenhouse gas inventories. In Proceedings of the IPCC expert meeting on use of models and measurements in greenhouse gas inventories. Sydney, Australia; 2010.

5. Zomer RJ, Trabucco A, Coe R, Place F. Trees on farm: an analysis of global extent and geographical patterns of agroforestry, ICRAF working paper no. 89. Nairobi, Kenya: World Agroforestry Centre; 2009.

6. Nair PKR. Carbon sequestration studies in agroforestry systems: a reality-check. Agroforest Syst 2012;86:243-53.

7. Nair PR, Nair VD. “Solid-fluid-gas”: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Curr Opin Environ Sustain 2014;6:22-7.

8. De Foresta HE, Somarriba A, Temu D, Boulanger H, Feuilly M, Toward the assessment of trees outside forests. Resources assessment working paper. Rome: FAO; 2013.

9. Albrecht A, Cadisch G, Blanchart E, Sitompul SM, Vanlauwe B. Below-ground inputs: relationships with soil quality, soil C storage. In: Noordwijk MV, Cadisch G, Ong CK, editors. Below-ground interactions in tropical agroecosystems: concepts and models with multiple plant components. Wallingford: CABI Publishing; 2004. pp. 193-207.

10. Ramachandran Nair P, Nair V. Carbon storage in North American agroforestry systems. In: Kimble J, Lal R, Birdsey R, Heath L, editors. The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect. Boca Raton: CRC Press; 2003.

11. Makundi WR, Sathaye JA. Mitigation potential and cost in tropical forestry - relative role for agroforestry. Environ Dev Sustain 2004;6:235-60.

12. Haile SG, Nair PK, Nair VD. Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 2008;37:1789-97.

13. Nair PK, Mohan Kumar B, Nair VD. Agroforestry as a strategy for carbon sequestration. J Plant Nutri Soil Sci 2009;172:10-23.

14. IPCC. Land use, land-use change, and forestry. a special report of the IPCC. Cambridge: Cambridge University Press; 2000.

15. Sanchez PA. Linking climate change research with food security and poverty reduction in the tropics. Agric Ecosyst Environ 2000;82:371-83.

16. Roshetko JM, Delaney M, Hairiah K. Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? Am J Altern Agric 2002;17:138-48. Available from: https://www.jstor.org/stable/44503228 [Last accessed on 7 Dec 2022].

17. Sharrow S, Ismail S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor Syst 2004;60:123-30.

18. Kirby KR, Potvin C. Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. For Ecol Manag 2007;246:208-21.

19. Palm C, Tomich T, Van Noordwijk M, et al. Mitigating GHG emissions in the humid tropics: case studies from the alternatives to slash-and-burn program (ASB). Environ Dev Sustain 2004;6:145-62.

20. Nair PKR, Gordon AM, Mosquera-Losada MR. Agroforestry. In Jorgensen SE, Faith BD, editors, Encyclopedia of ecology, Oxford: Elsevier; 2008, pp. 101-10.

21. Akinnifesi FK, Chirwa PW, Ajayi OC, et al. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric J 2008;3:58-75.

22. Khumalo S, Chirwa P, Moyo B, Syampungani S. The status of agrobiodiversity management and conservation in major agroecosystems of Southern Africa. Agric Ecosyst Environ 2012;157:17-23.

23. Garrity DP, Akinnifesi FK, Ajayi OC, et al. Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2010;2:197-214.

24. Moyo BHZ. The role and use of indigenous knowledge in small-scale agricultural systems in Africa: the case of farmers in northern Malawi. Ph.D thesis. Glasgow: University of Glasgow; 2008.

25. Sørensen C. Control and sanctions over the use of forest products in the Kafue river Basin of Zambia. Rural Development forestry network paper 15a. London: Overseas Development Institute; 1993.

26. Soones I. Livestock populations and the household economy: a case study from southern Zimbabwe. Ph.D thesis, London: Imperial College; 1990.

27. Musinguzi E. An analysis of the agro-ecological systems, biodiversity use, nutrition and health in selected east and Southern Africa countries. Rome: Biodiversity International; 2011. 38p.

28. Chidumayo EN. A shifting cultivation land use system under population pressure in Zambia. Agrofor Syst 1987;5:15-25.

29. Landry J, Chirwa PW. Analysis of the potential socio-economic impact of establishing plantation forestry on rural communities in Sanga district, Niassa province, Mozambique. Land Use Policy 2011;28:542-51.

30. Sileshi GW, Mafongoya PL, Akinnifesi FK, et al. Agroforestry: fertilizer trees. Encycl Agric Food Syst 2014;1:222-234.

31. Sollins P, Swanston C, Kramer M. Stabilization and destabilization of soil organic matter - a new focus. Biogeochemistry 2007;85:1-7.

32. Nyamadzawo G, Nyamugafata P, Wuta M, Nyamangara J. Maize yields under coppicing and non coppicing fallows in a fallow-maize rotation system in central Zimbabwe. Agroforest Syst 2012;84:273-86.

33. Mafongoya PL, Dzowela BH. Biomass production of tree fallows and their residual effect on maize in Zimbabwe. Agrofor Syst 1999;47:139-51.

34. Prescott C, Kishchuk B, Weetman G. Long-term effects of repeated N fertilization and straw application in a jack pine forest: 3. Nitrogen availability in the forest floor. Can J For Res 1995;25:1991-6.

35. Prescott C, Kumi J, Weetman G. Long-term effects of repeated N fertilization and straw application in a jack pine forest: 2. Changes in the ericaceous ground vegetation. Can J For Res 1995;25:1984-90.

36. Horwath W. Carbon cycling and formation of soil organic matter. In: Paul EA, editor. Soil microbiology, ecology, and biochemistry. Burlington: Academic; 2007. pp. 303-39.

37. Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 2010;78:39-51.

38. Nyamadzawo G, Nyamugafata P, Chikowo R, Chirwa T, Mafongoya PL. Soil and carbon losses under rainfall simulation from two contrasting soils under maize-improved fallows rotation in Eastern Zambia. In Roose EJ, Lal R, Feller C, Barthes B, Stewarts BA, editors. Soil Erosion and Carbon Dynamics. Boca Raton: CRC Publishers, Taylor and Francis Group; 2006. pp. 197-206.

39. Lal R. Agroforestry systems and soil surface management of a tropical alfisol. Parts I-VI. Agrofort Syst 1989;8:97-111.

40. Nyamadzawo G, Chikowo R, Nyamugafata P, Giller K. Improved legume tree fallows and tillage effects on structural stability and infiltration rates of a kaolinitic sandy soil from central Zimbabwe. Soil Tillage Res 2007;96:182-94.

41. Nyamadzawo G, Nyamugafata P, Chikowo R, Giller K. Partitioning of simulated rainfall in a kaolinitic soil under improved fallow-maize rotation in Zimbabwe. Agrofor Syst 2003;59:207-14.

42. Gama-Rodrigues EF, Ramachandran Nair PK, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RC. Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manag 2010;45:274-83.

43. Kaonga M, Coleman K. Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model. Model For Ecol Manag 2008;256:1160-6.

44. Nyamadzawo G, Chikowo R, Nyamugafata P, Nyamangara J, Giller KE. Soil organic carbon dynamics of improved fallow-maize rotation systems under conventional and no-tillage in Central Zimbabwe. Nutr Cycl Agroecosyst 2008;81:85-93.

45. Kimaro AA. Sequential agroforestry systems for improving fuelwood supply and crop yield in semi-arid Tanzania. Ph.D thesis, Toronto: University of Toronto; 2009. 123p.

46. Makumba W, Janssen B, Oenema O, Akinnifesi FK. Influence of time of application on the performance of Gliricidia prunings as a source of N for maize. Exp Agr 2006;42:51-63.

47. Okorio J, Maghembe J. The growth and yield of Acacia albida intercropped with maize (Zea mays) and beans (Phaseolus vulgaris) at Morogoro, Tanzania. For Ecol Manag 1994;64:183-90.

48. Stromgaard P. Biomass, growth, and burning of woodland in a shifting cultivation area of South Central Africa. For Ecol Manag 1985;12:163-78.

49. Chidumayo EN. Effects of accidental and prescribed fires on miombo woodland, Zambia. Commonw For Rev 1997;6:268-72. Available from: https://www.jstor.org/stable/42610031 [Last accessed on 7 Dec 2022].

50. Nyadzi GI, Otsyina RM, Banzi FM, et al. Rotational woodlot technology in northwestern Tanzania: tree species and crop performance. Agrofor Syst 2003;59:253-63.

51. Kaonga ML, Bayliss-smith TP. Carbon pools in tree biomass and the soil in improved fallows in eastern Zambia. Agrofor Syst 2009;76:37-51.

52. Malunguja GK, Devi A, Kilonzo M, Rubanza CD. Climate change mitigation through carbon dioxide (CO2) sequestration in community reserved forests of northwest Tanzania. Arch Agric Environ Sci 2020;5:231-40.

53. Handavu F, Syampungani S, Sileshi GW, Chirwa PWC. Aboveground and belowground tree biomass and carbon stocks in the miombo woodlands of the Copperbelt in Zambia. Carbon Manag 2021;12:307-21.

54. Chirwa PWC, Syampungani S, Geldenhuys CJ. Managing Southern African woodlands for biomass production: the potential challenges and opportunities. In: Seifert, T, editor. Bioenergy from wood: sustainable production in the tropics, managing forest ecosystems. Cham: Springer; 2014. pp. 67-87.

55. Musokwa M, Mafongoya PL, Zungu M, Kondwakwenda A. Soil macro fauna indices and their association with physical soil properties under agroforestry systems. Int J Agrofor Silvic 2020;8:001-9.

56. Sileshi G, Akirmifesi FK, Ajayi OC, et al. Contributions of agroforestry to ecosystems services in the miombo eco-region of eastern and southern Africa. Afr J Environ Sci Technol 2007;1:68-80.

57. Dinesh D, Campbell BM, Bonilla-findji O, Richards M. 10 Best bet innovations for adaptation in agriculture: a supplement to the UNFCCC NAP technical guidelines. Wageningen: The Netherlands; 2017.

58. Sheppard JP, Bohn Reckziegel R, Borrass L, et al. Agroforestry: an appropriate and sustainable response to a changing climate in Southern Africa? Sustainability 2020;12:6796.

59. Rhoades C. Seasonal pattern of nitrogen mineralization and soil moisture beneath Faidherbia albida (syn Acacia albida) in central malawi. Agrofor Syst 1995;29:133-45.

60. Henry M, Picard N, Trotta C, et al. Estimating tree biomass of sub-Saharan African forests: a review of available allometric equations. Silva Fenn 2011;45:477-569.

61. Vieilledent G, Vaudry R, Andriamanohisoa SFD, et al. A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecol Appl 2012;22:572-83.

62. IPCC. Good practice guidance for land use, land-use change and forestry. In Penman J, Gytarsky M, Hiraishi T, editors. IPCC national greenhouse gas inventories programme. Kanagawa: Institute for Global Environmental Strategies (IGES); 2003.

63. Wadham-Gagnon B, Sharpe D. Estimating carbon stocks in tropical hardwood plantations: using species-specific and non-destructive parameters to estimate aboveground biomass for six native species in Panama. Internship Report. 2006. Available from: https://docplayer.net/101099556-Benjamin-wadham-gagnon-diana-sharpe.html [Last accessed 8 Dec 2022].

64. Saglan B, Kucuki O, Bilgili E, Durmaz D, Basal I. Estimating fuel biomass of some shrub species (Maquis) in Turkey. Turk J Agric 2008;32:349-56. Available from: https://journals.tubitak.gov.tr/agriculture/vol32/iss4/13 [Last accessed on 7 Dec 2022].

65. Dong L, Zhang L, Li F. Additive biomass equations based on different dendrometric variables for two dominant species (larix gmelini rupr. and betula platyphyllasuk.) in natural forests in the eastern daxing’an mountains, Northeast China. Forests 2018;9:261.

66. Picard N, Saint-Andre L, Henry M. Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Montpellier: Food and Agricultural Organisation of the United Nations, Rome and Centre de Coorperation Internationale en Recherche Agronomique pour le Development; 2012; 215p.

67. Robinson D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc Biol Sci 2007;274:2753-9.

68. Koala J, Sawadogo L, Savadogo P, Aynekulu E, Helskanen J, Said M. Allometric equations for below-ground biomass of four key woody species in West African savanna-woodlands. Silva Fenn 2017:51.

69. Scharlemann JPW, Tanner EVJ. Hiederer R, Kapos V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag 2014;5:1, 81-91.

70. Ciais P, Bombelli A, Williams M, et al. The carbon balance of Africa: synthesis of recent research studies. Philos Trans A Math Phys Eng Sci 2011;369:2038-57.

71. Handavu F, Chirwa PW, Syampungani S, Mahamane L. A review of carbon dynamics and assessment methods in the miombo woodlands. South For A J For Sci 2017;79:95-102.

72. Donovan P. Measuring soil carbon change: a flexible, practical, local method. 2013. Available from: https://soilcarboncoalition.org/files/MeasuringSoilCarbonChange.pdf [Last accessed on 7 Dec 2022].

73. Ryan CM, Williams M, Grace J. Above- and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique. Biotropica 2011;43:423-32.

74. Vågen T, Lal R, Singh BR. Soil carbon sequestration in sub-Saharan Africa: a review. Land Degrad Dev 2005;16:53-71.

75. Makipaa R, Liski J, Guendehou S, Malimbwi R, Kaaya A. Soil carbon monitoring using surveys and modelling: general description and application in the United Republic of Tanzania. FAO Forestry Paper 168. Rome: FAO; 2012.

76. Walsh MG, Vågen TG. The land degradation surveillance framework: guide to field sampling and measurement procedures. Nairobi: World Agroforestry Centre; 2006.

77. Vagen TG, Winowiecki L, Tondoh JE. The land degradation surveillance framework: field guide; 2013. Available from: https://www1.cifor.org/fileadmin/subsites/sentinel-landscapes/document/LDSF_Field_Guide.pdf [Last accessed on 8 Dec 2022].

78. Ellert BH, Janzen HH, Entz T. Assessment of a method to measure temporal change in soil carbon storage. Soil Sci Soc Am J 2002;66:1687-95.

79. Walker SM, Desanker PV. The impact of land use on soil carbon in Miombo Woodlands of Malawi. For Ecol Manag 2004;203:345-60.

80. Makumba W, Akinnifesi FK, Janssen B, Oenema O. Long-term impact of a gliricidia-maize intercropping system on carbon sequestration in southern Malawi. Agric Ecosyst Environ 2007;118:237-43.

Carbon Footprints
ISSN 2831-932X (Online)

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently

https://www.portico.org/publishers/oae/