REFERENCES

1. Sun, J.; Wang, H. Stability analysis for highly nonlinear switched stochastic systems with time-varying delays. Complex. Eng. Syst. 2022, 2, 17.

2. Song, K.; Bonnin, M.; Traversa, F. L.; Bonani, F. Stochastic analysis of a bistable piezoelectric energy harvester with a matched electrical load. Nonlinear. Dyn. 2023, 111, 16991-7005.

3. Zhang, Y.; Duan, J.; Jin, Y.; Li, Y. Discovering governing equation from data for multi-stable energy harvester under white noise. Nonlinear. Dyn. 2021, 106, 2829-40.

4. Neves, W.; Olivera, C. Stochastic transport equations with unbounded divergence. J. Nonlinear. Sci. 2022, 32, 60.

5. Espanol, P. Fluid particle model. Phys. Rev. E. 1998, 57, 2930.

6. Gay-Balmaz, F.; Holm, D. Stochastic geometric models with non-stationary spatial correlations in Lagrangian fluid flows. J. Nonlinear. Sci. 2018, 28, 873-904.

7. Arnold, L. Stochastic differential equations : theory and applications. Wiley Interscience; 1974. Available from: https://cir.nii.ac.jp/crid/1970867909896889156[Last accessed on 24 Oct 2025].

8. Philipp, F. ; Schaller, M. ; Worthmann, K. ; Peitz, S. ; Nüske, F. Error bounds for kernel-based approximations of the Koopman operator; 2023.

9. Doob, J. L. Stochastic processes. Wiley; 1953. Available from: https://www.wiley.com/en-us/Stochastic+Processes-p-9780471523697[Last accessed on 24 Oct 2025].

10. Huang, W.; Ji, M.; Liu, Z.; Yi, Y. Integral identity and measure estimates for stationary Fokker-Planck equations. Ann. Probab. 2015, 43, 1712-30.

11. Harris, T. The existence of stationary measures for certain Markov processes. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. 1956; pp. 113-24. Available from: https://apps.dtic.mil/sti/html/tr/AD0604937/[Last accessed on 24 Oct 2025].

12. Huang, W.; Ji, M.; Liu, Z.; Yi, Y. Concentration and limit behaviors of stationary measures. Phys. D. 2018, 369, 1-17.

13. Shalizi, C.; Kontorovich, A. Almost none of the theory of stochastic processes. Lecture Notes; 2010. Available from: www.stat.cmu.edu/cshalizi/almost-none/[Last accessed on 24 Oct 2025].

14. Stanton, R. A nonparametric model of term structure dynamics and the market price of interest rate risk. J. Finance. 1997, 52, 1973-2002.

15. Gouesbet, G. Reconstruction of the vector fields of continuous dynamical systems from numerical scalar time series. Phys. Rev. A. 1991, 43, 5321.

16. Tsutsumi, N.; Nakai, K.; Saiki, Y. Constructing differential equations using only a scalar time-series about continuous time chaotic dynamics. Chaos. 2022, 32, 091101.

17. Gouesbet, G.; Letellier, C. Global vector-field reconstruction by using a multivariate polynomial L 2 approximation on nets. Phys. Rev. E. 1994, 49, 4955.

18. Cao, J.; Wang, L.; Xu, J. Robust estimation for ordinary differential equation models. Biometrics. 2011, 67, 1305-13.

19. Aït-Sahalia, Y.; Hansen, L. P.; Scheinkman, J. A. Chapter 1 - Operator methods for continuous-time Markov processes. In: Handbook of financial econometrics: tools and techniques. Elsevier; 2010. pp. 1-66.

20. Garcia, C.; Otero, A.; Félix, P.; Presedo, J.; Márquez, D. G. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes. Phys. Rev. E. 2017, 96, 022104.

21. Devlin, J.; Husmeier, D.; Mackenzie, J. Optimal estimation of drift and diffusion coefficients in the presence of static localization error. Phys. Rev. E. 2019, 100, 022134.

22. Darcy, M.; Hamzi, B.; Livieri, G.; Owhadi, H.; Tavallali, P. One-shot learning of stochastic differential equations with data adapted kernels. Phys. D. 2023, 444, 133583.

23. Batz, P.; Ruttor, A.; Opper, M. Approximate Bayes learning of stochastic differential equations. Phys. Rev. E. 2018, 98, 022109.

24. Ruttor, A.; Batz, P.; Opper, M. Approximate Gaussian process inference for the drift of stochastic differential equations. 2013; Available from: https://proceedings.neurips.cc/paper_files/paper/2013/file/021bbc7ee20b71134d53e20206bd6feb-Paper.pdf[Last accessed on 24 Oct 2025].

25. Ella-Mintsa, E. Nonparametric estimation of the diffusion coefficient from i.i.d. S.D.E. paths. Stat. Inference. Stoch. Process. 2024, 27, 585.

26. Davis, W.; Buffett, B. Estimation of drift and diffusion functions from unevenly sampled time-series data. Phys. Rev. E. 2022, 106, 014140.

27. Ye, F.; Yang, S.; Maggioni, M. Nonlinear model reduction for slow-fast stochastic systems near unknown invariant manifolds. J. Nonlinear. Sci. 2024, 34, 22.

28. Wang, Z.; Ma, Q.; Yao, Z.; Ding, X. The magnus expansion for stochastic differential equations. J. Nonlinear. Sci. 2020, 30, 419-47.

29. Yin, X.; Zhang, Q. Backstepping-based state estimation for a class of stochastic nonlinear systems. Complex. Eng. Syst. 2022, 2, 1.

30. Das, S. Conditional expectation using compactification operators. Appl. Comput. Harmon. Anal. 2024, 71, 101638.

31. Das, S.; Giannakis, D. Delay-coordinate maps and the spectra of Koopman operators. J. Stat. Phys. 2019, 175, 1107-45.

32. Das, S.; Giannakis, D. Koopman spectra in reproducing kernel Hilbert spaces. Appl. Comput. Harmon. Anal. 2020, 49, 573-607.

33. Das, S.; Mustavee, S.; Agarwal, S. Data-driven discovery of quasiperiodically driven dynamics. Nonlinear. Dyn. 2025, 113, 4097.

34. Das, S.; Mustavee, S.; Agarwal, S.; Hassan, S. Koopman-theoretic modeling of quasiperiodically driven systems: example of signalized traffic corridor. IEEE. Trans. Syst. Man. Cyber. Syst. 2023, 53, 4466-76.

35. Giannakis, D.; Das, S.; Slawinska, J. Reproducing kernel Hilbert space compactification of unitary evolution groups. Appl. Comput. Harmon. Anal. 2021, 54, 75-136.

36. Marshall, A.; Olkin, I. Multivariate chebyshev inequalities. Anna. Math. Stat. 1960, 31, 1001-14.

37. Lorenz, E. Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci. 1969, 26, 636-46.

38. Strogatz, S. Nonlinear dynamics and chaos with applications to physics, biology, chemistry, and engineering, 2nd ed.; CRC Press, 2015.

39. Lorenz, E.; Emanuel, K. Optimal sites for supplementary weather observations: simulation with a small model. J. Atmos. Sci. 1998, 55, 399-414.

40. Marshall, N.; Coifman, R. Manifold learning with bi-stochastic kernels. IMA. J. Appl. Math. 2019, 84, 455-82.

41. Wormell, C. L.; Reich, S. Spectral convergence of diffusion maps: Improved error bounds and an alternative normalization. SIAM. J. Numer. Anal. 2021, 59, 1687-734.

42. Coifman, R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5-30.

43. Hein, M.; Audibert, J. Y.; von Luxburg, U. From graphs to manifolds-weak and strong pointwise consistency of graph Laplacians. In: International Conference on Computational Learning Theory. Springer; 2005. pp. 470-85.

44. Vaughn, R.; Berry, T.; Antil, H. Diffusion maps for embedded manifolds with boundary with applications to PDEs. Appl. Comput. Harmonic. Anal. 2024, 68, 101593.

45. Berry, T.; Das, S. Learning theory for dynamical systems. SIAM. J. Appl. Dyn. 2023, 22, 2082-122.

46. Berry, T.; Das, S. Limits of learning dynamical systems. SIAM. Rev. 2025, 67, 107-37.

47. Wang, S.; Blanchet, J.; Glynn, P. An efficient high-dimensional gradient estimator for stochastic differential equations. Adv. Neural. Inf. Proc. Syst. 2024, 37, 88045.

48. Chen, D.; Chen, J.; Zhang, X.; et al. Critical nodes identification in complex networks: a survey. Complex. Eng. Syst. 2025, 5, 11.

49. Yang, C.; Suh, C. On controlling dynamic complex networks. Phys. D. 2022, 441, 133499.

50. Guan, Y.; Subel, A.; Chattopadhyay, A.; Hassanzadeh, P. Learning physics-constrained subgrid-scale closures in the small-data regime for stable and accurate LES. Phys. D. 2023, 443, 133568.

51. Boutros, D.; Titi, E. Onsager's conjecture for subgrid scale α-models of turbulence. Phys. D. 2023, 443, 133553.

52. Narayan, A.; Yan, L.; Zhou, T. Optimal design for kernel interpolation: applications to uncertainty quantification. J. Comput. Phys. 2021, 430, 110094.

53. Baraniuk, R.; Jones, D. A signal-dependent time-frequency representation: optimal kernel design. IEEE. Trans. Signal. Process. 1993, 41, 1589-602.

54. Crammer, K.; Keshet, J.; Singer, Y. Kernel design using boosting. In Part of Advances in Neural Information Processing Systems 15 (NIPS 2002); 2002. Available from: https://papers.nips.cc/paper_files/paper/2002/hash/dd28e50635038e9cf3a648c2dd17ad0a-Abstract.html[Last accessed on 24 Oct 2025].

55. Vural, E.; Guillemot, C. Out-of-sample generalizations for supervised manifold learning for classification. IEEE. Trans. Image. Process. 2016, 25, 1410-24.

56. Pan, B.; Chen, W. S.; Chen, B.; Xu, C.; Lai, J. Out-of-sample extensions for non-parametric kernel methods. IEEE. Trans. Neural. Netw. Learn. Syst. 2016, 28, 334-45.

57. Kaczynski, T.; Mrozek, M.; Wanner, T. Towards aformal tie between combinatorial and classical vector field dynamics. J. Comput. Dyn. 2016, 3, 17-50.

58. Mrozek, M.; Wanner, T. Creating semiflows on simplicial complexes from combinatorial vector fields. J. Dif. Eq. 2021, 304, 375-434.

59. Das, S. Reconstructing dynamical systems as zero-noise limits; 2024.

60. Mrozek, M. Topological invariants, mulitvalued maps and computer assisted proofs in dynamics. Comput. Math. Appl. 1996, 32, 83-104.

61. Mischaikow, K.; Mrozek, M. Isolating neighborhoods and chaos. Japan. J. Ind. Appl. Math. 1995, 12, 205-36.

62. Du, Q.; Yang, H. Computation of robust positively invariant set based on direct data-driven approach. Complex. Eng. Syst. 2024, 4, 24.

63. Das, S.; Giannakis, D.; Gu, Y.; Slawinska, J. Learning dynamical systems with the spectral exterior calculus; 2025.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/