REFERENCES

1. Jiang, Y.; Li, X.; Zhu, G.; et al. Integrated sensing and communication for low altitude economy: opportunities and challenges. IEEE. Commun. Mag. , 2025, 1-7.

2. Ye, X.; Mao, Y.; Yu, X.; Sun, S.; Fu, L.; Xu, J. Integrated sensing and communications for low-altitude economy: a deep reinforcement learning approach. IEEE. Trans. Wirel. Commun. 2025.

3. Yuan, R.; Shao, S.; Chen, M. Health status assessment of unmanned aerial vehicle (UAV) attitude control system based on an improved multivariate state estimation method. Complex. Eng. Syst. 2024, 4, 10.

4. Asghari, O.; Ivaki, N.; Madeira, H. UAV operations safety assessment: a systematic literature review. ACM. Comput. Surv. 2025, 57, 1-37.

5. Di Sorbo, A.; Zampetti, F.; Visaggio, A.; Di Penta, M.; Panichella, S. Automated identification and qualitative characterization of safety concerns reported in UAV software platforms. ACM. Trans. Softw. Eng. Methodol. 2023, 32, 1-37.

6. Tong, X.; Li, J.; Zhao, C. Intensity enhanced for solid-state-LiDAR in simultaneous localization and mapping. Complex. Eng. Syst. 2024, 4, 11.

7. Xu, Z.; Jin, H.; Han, X.; Shen, H.; Shimada, K. Intent prediction-driven model predictive control for uav planning and navigation in dynamic environments. IEEE. Robot. Autom. Lett. 2025, 10, 4946-53.

8. Yue, P.; Xin, J.; Zhang, Y.; Lu, Y.; Shan, M. Semantic-driven autonomous visual navigation for unmanned aerial vehicles. IEEE. Trans. Ind. Electron. 2024, 71, 14853-63.

9. Ali, F.; Ahtasham, M.; Anfaal, Z. Enhancing unmanned aerial vehicle communication through distributed ledger and multi-agent deep reinforcement learning for fairness and scalability. Complex. Eng. Syst. 2024, 4, 14.

10. Peng, Y.; Liu, K.; Cai, X.; Wang, J.; Lin, Z. Multiple unmanned aerial vehicle collaborated three-dimensional electromagnetic target situation map construction. Complex. Eng. Syst. 2024, 4, 15.

11. Javaid, S.; Saeed, N.; Qadir, Z.; et al. Communication and control in collaborative UAVs: recent advances and future trends. IEEE. Trans. Intell. Transport. Syst. 2023, 24, 5719-39.

12. Xiong, R.; Xiao, Q.; Wang, Z.; Xu, Z.; Shan, F. Leveraging lightweight blockchain for secure collaborative computing in UAV Ad-Hoc networks. Comput. Netw. 2024, 251, 110612.

13. Zhang, G.; Lei, T.; Huo, X.; et al. Path loss prediction for air-to-ground communication links via scenario transfer technology. Complex. Eng. Syst. 2024, 4, 18.

14. Yin, D.; Yang, X.; Yu, H.; Chen, S.; Wang, C. An air-to-ground relay communication planning method for UAVs swarm applications. IEEE. Trans. Intell. Veh. 2023, 8, 2983-97.

15. Chen, C.; Luo, J.; Xu, Z.; Xiong, R.; Shen, D.; Yin, Z. Enabling large-scale low-power LoRa data transmission via multiple mobile LoRa gateways. Compu. Netw. 2023, 237, 110083.

16. Chen, C.; Luo, J.; Xu, Z.; et al. Loradrone: Enabling low-power lora data transmission via a mobile approach. 2022. 18th. International. Conference. on. Mobility,. Sensing. and. Networking. (MSN),. , IEEE, 2022, pp.239-46.

17. Yang, S.; Zhang, Z.; Zhang, J.; Chu, X.; Zhang, J. Adaptive modulation for wobbling drone air-to-ground links in millimeter-wave bands. IEEE. Internet. Things. J. 2025, 12, 9792-804.

Complex Engineering Systems
ISSN 2770-6249 (Online)

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/