REFERENCES
1. European Union. Proposal for a regulation of the European Parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts; 2021. Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:52021PC0206#document2 [Last accessed on 31 Oct 2025].
2. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206-15.
4. Alonso, J. M.; Magdalena, L. Special issue on interpretable fuzzy systems. Inf. Sci. 2011, 10, 4331-39.
5. Alonso Moral, J. M.; Castiello, C.; Magdalena, L.; Mencar, C. Designing interpretable fuzzy systems. In: Explainable fuzzy systems, studies in computational intelligence. Cham: Springer International Publishing; 2021. pp. 119-68.
6. Alonso Moral, J. M.; Castiello, C.; Magdalena, L.; Mencar, C. Design and validation of an explainable fuzzy beer style classifier. In: Explainable fuzzy systems, studies in computational intelligence. Cham: Springer International Publishing; 2021. pp. 169-217.
7. Wang, L. X. Analysis and design of hierarchical fuzzy systems. IEEE. Trans. Fuzzy. Syst. 1999, 7, 617-24.
8. Zhang, Y.; Ishibuchi, H.; Wang, S. Deep Takagi–Sugeno–Kang fuzzy classifier with shared linguistic fuzzy rules. IEEE. Trans. Fuzzy. Syst. 2018, 26, 1535-49.
9. Razak, T. R.; Garibaldi, J. M.; Wagner, C.; Pourabdollah, A.; Soria, D. Interpretability indices for hierarchical fuzzy systems. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); 2017. pp. 1-6.
10. Magdalena, L. Designing interpretable hierarchical fuzzy systems. In: 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); 2018. pp. 1-8.
11. Alonso, J. M.; Cordon, O.; Quirin, A.; Magdalena, L. Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams; 2011, pp. 181-85. Available from: https://sci2s.ugr.es/sites/default/files/ficherosPublicaciones/1394_Alonso-etal-WConSC11.pdf [Last accessed on 31 Oct 2025].
12. Kokkotis, C.; Ntakolia, C.; Moustakidis, S.; Giakas, G.; Tsaopoulos, D. Explainable machine learning for knee osteoarthritis diagnosis based on a novel fuzzy feature selection methodology. Phys. Eng. Sci. Med. 2022, 45, 219-29.
13. Li, S.; Ji, J.; Feng, K.; et al. Composite neuro-fuzzy system-guided cross-modal zero-sample diagnostic framework using multisource heterogeneous noncontact sensing data. IEEE. Trans. Fuzzy. Syst. 2025, 33, 302-13.
14. Cai, X.; Zhang, J.; Ning, Z.; Cui, Z.; Chen, J. A many-objective multistage optimization-based fuzzy decision-making model for coal production prediction. IEEE. Trans. Fuzzy. Syst. 2021, 29, 3665-75.
15. Deveci, M.; Simic, V.; Karagoz, S.; Antucheviciene, J. An interval type-2 fuzzy sets based Delphi approach to evaluate site selection indicators of sustainable vehicle shredding facilities. Appl. Soft. Comput. 2022, 118, 108465.
16. Huang, W.; Wu, M.; Chen, L.; Chen, X.; Cao, W. Multi-objective drilling trajectory optimization using decomposition method with minimum fuzzy entropy-based comprehensive evaluation. Appl. Soft. Comput. 2021, 107, 107392.
17. Pickering, L.; Cohen, K.; De Baets, B. A narrative review on the interpretability of fuzzy rule-based models from a modern interpretable machine learning perspective. Int. J. Fuzzy. Syst. 2025.
18. Ministry of Infrastructure and Water Management. About the ILT; 2023. Available from: https://english.ilent.nl/about-the-ilt [Last accessed on 31 Oct 2025].
19. European Union. Regulation (EU) No 1257/2013 of the European Parliament and of the council of 20 November 2013 on ship recycling and amending regulation (EC) No 1013/2006 and directive 2009/16/EC text with EEA relevance; 2013. Available from: https://eur-lex.europa.eu/eli/reg/2013/1257/oj/eng [Last accessed on 31 Oct 2025].
20. Barua, S.; Rahman, I. M.; Hossain, M. M.; et al. Environmental hazards associated with open-beach breaking of end-of-life ships: a review. Environ. Sci. Pollu. Res. 2018, 25, 30880-93.
21. The Kingdom of the Netherlands. Staatsblad van het Koninkrijk der Nederlanden; 2021. Available from: https://zoek.officielebekendmakingen.nl/stb-2021-499.html [Last accessed on 31 Oct 2025].
22. Hadwick, D.; Lan, S. Lessons to be learned from the dutch childcare allowance scandal: a comparative review of algorithmic governance by tax administrations in the Netherlands, France and Germany. WTJ 2021, 13, 609-45. Available from: https://ssrn.com/abstract=4282704 [Last accessed on 31 Oct 2025].
23. Kazim, E.; Koshiyama, A. Explaining decisions made with AI: a review of the co-badged guidance by the ICO and the Turing Institute; 2020.
24. Carvalho, D. V.; Pereira, E. M.; Cardoso, J. S. Machine learning interpretability: a survey on methods and metrics. Electronics 2019, 8, 832.
25. Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: a review of machine learning interpretability methods. Entropy 2020, 23, 18.
26. Lundberg, S. M.; Lee, S. I. A unified approach to interpreting model predictions; 2017. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf [Last accessed on 31 Oct 2025].
27. Scikit-Learn. Permutation importance vs random forest feature importance (MDI); 2023. Available from: https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance.html [Last accessed on 31 Oct 2025].
28. Gini, C. Variabilità e mutabilità: contributo allo studio delle distribuzioni e delle relazioni statistiche. [Fasc. I. ]. Studi economico-giuridici pubblicati per cura della facoltà di Giurisprudenza della R. Università di Cagliari. Tipogr. di P. Cuppini; 1912. Available from: https://books.google.se/books?id=fqjaBPMxB9kC [Last accessed on 11 Nov 2025].
30. Shapley, L. A value for n-Person games. In: Kuhn, H.; Tucker, A.; editors. Contributions to the theory of games II. Princeton University Press; 1953, pp. 307-17.
31. Lundberg, S. M.; Erion, G. G.; Chen, H.; et al. Explainable AI for trees: from local explanations to global understanding. CoRR 2019, 1905.04610.
32. NGO Shipbreaking Platform. Annual lists of scrapped ships; 2023. Available from: https://shipbreakingplatform.org/annual-lists/ [Last accessed on 31 Oct 2025].
33. International Maritime Organization. GISIS; 2023. Available from: https://gisis.imo.org/ [Last accessed on 31 Oct 2025].
34. European Maritime Safety Agency. THETIS-EU; 2023. Available from: https://portal.emsa.europa.eu/web/thetis-eu/ [Last accessed on 31 Oct 2025].
35. Fernandes, E. R. Q.; de Carvalho, A. C. P. L. F.; Yao, X. Ensemble of classifiers based on multiobjective genetic sampling for imbalanced data. IEEE. Trans. Knowl. Data. Eng. 2020, 32, 1104-15.
36. Mohammed, R.; Rawashdeh, J.; Abdullah, M. Machine learning with oversampling and undersampling techniques: overview study and experimental results. In: 2020 11th International Conference on Information and Communication Systems (ICICS); 2020. pp. 243-48.
38. Assilian, S. Artificial intelligence in control of real dynamic systems. Queen Mary University of London; 1974. Available from: http://qmro.qmul.ac.uk/xmlui/handle/123456789/1450 [Last accessed on 31 Oct 2025].
39. Mamdani, E. H. Application of fuzzy algorithms for control of simple dynamic plant. Proc. Inst. Elect. Eng. 1974, 121, 1585-88.
40. Kruse, R.; Klawonn, F.; Gebhardt, J. Foundations of fuzzy systems. Chichester, West Sussex, England, New York: Wiley & Sons; 1994.
41. Pickering, L.; Cohen, K. Toward explainable AI - genetic fuzzy systems - a use case. In: Rayz, J.; Raskin, V.; Dick, S.; Kreinovich, V.; editors. Explainable AI and other applications of fuzzy techniques. Cham: Springer International Publishing; 2022. pp. 343-54.
44. Mirjalili, S. Evolutionary algorithms and neural networks. In: Studies in computational intelligence. Springer; 2019, pp. 1-170.
45.
46. Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS. One. 2015, 10, e0118432.
47. Du, M.; Liu, N.; Hu, X. Techniques for interpretable machine learning. Commun. ACM. 2019, 63, 68-77.
48. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; et al. Scikit-learn: machine larning in Python. J. Mach. Learn. Res. 2011, 12, 2825-30.
49. Breiman, L.; Friedman, J.; Olshen, R. A.; Stone, C. Classification and regression trees. Belmont, CA: Wadsworth International Group; 1984.
50. Plonski, P. Extract rules from decision tree in 3 ways with Scikit-Learn and python. MLJAR; 2021. Available from: https://mljar.com/blog/extract-rules-decision-tree/ [Last accessed on 31 Oct 2025].
51. Wang, H.; Liang, Q.; Hancock, J. T.; Khoshgoftaar, T. M. Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods. J. Big. Data. 2024, 11, 1-16.




