REFERENCES
1. Skaramagkas V, Pentari A, Kefalopoulou Z, Tsiknakis M. Multi-modal deep learning diagnosis of Parkinson’s disease-a systematic review. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2399-423.
2. Lou J, Yu H, Wang FY. A review on automated facial nerve function assessment from visual face capture. IEEE Trans Neural Syst Rehabil Eng. 2020;28:488-97.
3. Liu X, Jin Y, Li X, Wu M, Guo Y. Facial paralysis evaluation based on improved residual network. In: 2023 2nd International Conference on Advanced Sensing, Intelligent Manufacturing (ASIM); 2023 May 12-14; Changsha City, China. New York: IEEE; 2023. pp. 36-40.
4. Liu X, Xia Y, Yu H, Dong J, Jian M, Pham TD. Region based parallel hierarchy convolutional neural network for automatic facial nerve paralysis evaluation. IEEE Trans Neural Syst Rehabil Eng. 2020;28:2325-32.
5. Ge X, Jose JM, Wang P, Iyer A, Liu X, Han H. ALGRNet: multi-relational adaptive facial action unit modelling for face representation and relevant recognitions. IEEE Trans Biom Behav Identity Sci. 2023;5:566-78.
6. Zhang Y, Ding L, Xu Z, et al. The feasibility of an automatical facial evaluation system providing objective and reliable results for facial palsy. IEEE Trans Neural Syst Rehabil Eng. 2023;31:1680-6.
7. Zhang Y, Gao W, Yu H, Dong J, Xia Y. Artificial intelligence-based facial palsy evaluation: a survey. IEEE Trans Neural Syst Rehabil Eng. 2024;32:3116-34.
8. Xia Y, Nduka C, Yap Kannan R, Pescarini E, Enrique Berner J, Yu H. AFLFP: a database with annotated facial landmarks for facial palsy. IEEE Trans Comput Soc Syst. 2023;10:1975-85.
10. Jin B, Gonçalves N, Cruz L, Medvedev I, Yu Y, Wang J. Simulated multimodal deep facial diagnosis. Expert Syst Appl. 2024;252:123881.
11. Sachs NA, Chang EL, Vyas N, Sorensen BN, Weiland JD. Electrical stimulation of the paralyzed orbicularis oculi in rabbit. IEEE Trans Neural Syst Rehabil Eng. 2007;15:67-75.
12. Linhares CDG, Lima DM, Ponciano JR, et al. ClinicalPath: a visualization tool to improve the evaluation of electronic health records in clinical decision-making. IEEE Trans Vis Comput Graph. 2023;29:4031-46.
13. Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR); 2022 Jun 19-24; New Orleans, LA, USA. New York: IEEE; 2022. pp. 11966-76. Available from: https://openaccess.thecvf.com/content/CVPR2022/html/Liu_A_ConvNet_for_the_2020s_CVPR_2022_paper.html [accessed 9 December 2025].
14. Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV); 2019 Oct 27-Nov 2; Seoul, South Korea. New York: IEEE; 2019. pp. 1314-24. Available from: https://openaccess.thecvf.com/content_ICCV_2019/html/Howard_Searching_for_MobileNetV3_ICCV_2019_paper.html [accessed 9 December 2025].
15. Paszke A, Gross S, Massa F, et al. Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, Editors. Advances in Neural Information Processing Systems 32. NeurIPS 2019; 2019 Dec 8-14; Vancouver, Canada. NeurIPS; 2019. Available from: https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html [accessed 9 December 2025].
16. Liu S, Qi L, Qin H, Shi J, Jia J. Path aggregation network for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18-22; Salt Lake City, UT, USA. New York: IEEE; 2018. pp. 8759-68. Available from: https://openaccess.thecvf.com/content_cvpr_2018/html/Liu_Path_Aggregation_Network_CVPR_2018_paper.html [accessed 9 December 2025].
17. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2018 Jun 18-22; Salt Lake City, UT, USA. New York: IEEE; 2018. pp. 7132-41. Available from: https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html [accessed 9 December 2025].
18. Moncaliano MC, Ding P, Goshe JM, Genther DJ, Ciolek PJ, Byrne PJ. Clinical features, evaluation, and management of ophthalmic complications of facial paralysis: a review. J Plast Reconstr Aesthet Surg. 2023;87:361-8.
19. Ding L, Martinez AM. Features versus context: an approach for precise and detailed detection and delineation of faces and facial features. IEEE Trans Pattern Anal Mach Intell. 2010;32:2022-38.
20. Lugaresi C, Tang J, Nash H, et al. MediaPipe: a framework for perceiving and processing reality. In: Third workshop on computer vision for AR/VR at IEEE computer vision and pattern recognition (CVPR); 2019 Jun 16-20; Long Beach, CA, USA. New York: IEEE; 2019. Available from: https://static1.squarespace.com/static/5c3f69e1cc8fedbc039ea739/t/5e130ff310a69061a71cbd7c/1578307584840/NewTitle_May1_MediaPipe_CVPR_CV4ARVR_Workshop_2019.pdf [accessed 9 December 2025].
21. King DE. Dlib-ml: a machine learning toolkit. J Mach Learn Res 2009;10:1755-8. Available from: https://www.jmlr.org/papers/volume10/king09a/king09a.pdf [accessed 9 December 2025].
22. Deng J, Guo J, An X, Zhu Z, Zafeiriou S. Masked face recognition challenge: the insightface track report. In: IEEE/CVF International Conference on Computer Vision (ICCV) Workshops; 2021 Oct 11-17; Virtual. New York: IEEE; 2021. pp. 1437-44. Available from: https://openaccess.thecvf.com/content/ICCV2021W/MFR/html/Deng_Masked_Face_Recognition_Challenge_The_InsightFace_Track_Report_ICCVW_2021_paper.html [accessed 9 December 2025].
23. Wagner K, Doroslovacki M. Proportionate-type normalized least mean square algorithms with gain allocation motivated by mean-square-error minimization for white input. IEEE Trans Signal Process. 2011;59:2410-5.
24. Mandal B, Li L, Wang GS, Lin J. Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Trans Intell Transport Syst. 2017;18:545-57.
25. Chen S, Epps J. Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction. IEEE Trans Cybern. 2014;44:2356-67.
26. Aloudat M, Faezipour M, El-Sayed A. Automated vision-based high intraocular pressure detection using frontal eye images. IEEE J Transl Eng Health Med. 2019;7:3800113.
27. Liu S, Liu X, Yan D, et al. Alterations in patients with first-episode depression in the eyes-open and eyes-closed conditions: a resting-state EEG study. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1019-29.






