REFERENCES
2. Allied Market Research. Hernia repair devices and consumables market size, share, competitive landscape and trend analysis report, by product, surgery type and hernia type : global opportunity analysis and industry forecast, 2020-2027. Available from: https://www.alliedmarketresearch.com/hernia-repair-devices-market. [Last accessed on 17 Apr 2025].
3. Wang F, Ma B, Ma Q, Liu X. Global, regional, and national burden of inguinal, femoral, and abdominal hernias: a systematic analysis of prevalence, incidence, deaths, and DALYs with projections to 2030. Int J Surg. 2024;110:1951-67.
4. Smith JM, Kapur SK, Mericli AF, Baumann DP, Butler CE. Parastomal hernia repair. Plast Aesthet Res. 2022;9:10.
5. Köckerling F, Sheen AJ, Berrevoet F, et al. The reality of general surgery training and increased complexity of abdominal wall hernia surgery. Hernia. 2019;23:1081-91.
6. Tuma F, Lopez RA, Varacallo MA. Anatomy, abdomen and pelvis: inguinal region (inguinal canal). Available from: http://www.ncbi.nlm.nih.gov/books/NBK470204/. [Last accessed on 17 Apr 2025].
7. Roos MM, Bakker WJ, Schouten N, et al. Higher recurrence rate after endoscopic totally extraperitoneal (TEP) inguinal hernia repair with ultrapro lightweight mesh: 5-year results of a randomized controlled trial (TULP-trial). Ann Surg. 2018;268:241-6.
8. Wu F, Zhang X, Liu Y, Cao D, Yu Y, Ma Y. Lightweight mesh versus heavyweight mesh for laparo-endoscopic inguinal hernia repair: a systematic review and meta-analysis. Hernia. 2020;24:31-9.
9. Bakker WJ, Aufenacker TJ, Boschman JS, Burgmans JPJ. Heavyweight mesh is superior to lightweight mesh in laparo-endoscopic inguinal hernia repair: a meta-analysis and trial sequential analysis of randomized controlled trials. Ann Surg. 2021;273:890-9.
10. Levy AS, Bernstein JL, Celie KB, Spector JA. Quantifying fascial tension in ventral hernia repair and component separation. Hernia. 2021;25:107-14.
11. Dietz UA, Kudsi OY, Gokcal F, et al. Excess body weight and abdominal hernia. Visc Med. 2021;37:246-53.
12. de Beaux A, Becker S, Parent T, et al. Hernia Basecamp - a free to use, online hernia learning platform. Analysis of its use since launch in June 2021. J Abdom Wall Surg. 2023;2:11803.
13. Xu Y, Saiding Q, Zhou X, Wang J, Cui W, Chen X. Electrospun fiber-based immune engineering in regenerative medicine. Smart Med. 2024;3:e20230034.
14. Murphy BL, Ubl DS, Zhang J, Habermann EB, Farley DR, Paley K. Trends of inguinal hernia repairs performed for recurrence in the United States. Surgery. 2018;163:343-50.
15. Palser TR, Swift S, Williams RN, Bowrey DJ, Beckingham IJ. Variation in outcomes and use of laparoscopy in elective inguinal hernia repair. BJS Open. 2019;3:466-75.
16. Takeuchi M, Collins T, Lipps C, et al. Towards automatic verification of the critical view of the myopectineal orifice with artificial intelligence. Surg Endosc. 2023;37:4525-34.
17. Takeuchi M, Collins T, Ndagijimana A, et al. Automatic surgical phase recognition in laparoscopic inguinal hernia repair with artificial intelligence. Hernia. 2022;26:1669-78.
19. Chan H, Samala RK, Hadjiiski LM, Zhou C. Deep learning in medical image analysis. In: Lee G, Fujita H, editors. Deep learning in medical image analysis. Cham: Springer International Publishing; 2020. pp. 3-21.
20. De Coster M, Shterionov D, Van Herreweghe M, et al. Machine translation from signed to spoken languages: state of the art and challenges. Univ Access Inf Soc. 2024;23:1305-31.
21. Cao H, Tan C, Gao Z, et al. A survey on generative diffusion models. IEEE Trans Knowl Data Eng. 2024;36:2814-30.
22. Bengesi S, El-Sayed H, Sarker MK, Houkpati Y, Irungu J, Oladunni T. Advancements in generative AI: a comprehensive review of GANs, GPT, autoencoders, diffusion model, and transformers. IEEE Access. 2024;12:69812-37.
24. Ning Y, He S, Wu Z, Xing C, Zhang LJ. A review of deep learning based speech synthesis. Appl Sci. 2019;9:4050.
25. ChatGPT. Available: https://chatgpt.com. [Last accessed on 17 Apr 2025].
26. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18:203-11.
27. Abadi M, Agarwal A, Barham P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv 2016, arXiv:1603.04467. Available from: https://doi.org/10.48550/arXiv.1603.04467. [Last accessed on 17 Apr 2025]
28. Paszke A, Gross S, Chintala S, et al. Automatic differentiation in PyTorch. 2017. Available from: https://www.semanticscholar.org/paper/Automatic-differentiation-in-PyTorch-Paszke-Gross/b36a5bb1707bb9c70025294b3a310138aae8327a. [Last accessed on 17 Apr 2025].
29. Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare. Nat Biomed Eng. 2022;6:1346-52.
30. Muehlematter UJ, Daniore P, Vokinger KN. Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis. Lancet Digit Health. 2021;3:e195-203.
31. Bohr A, Memarzadeh K. Artificial intelligence in healthcare. Academic Press, 2020. Available from: https://shop.elsevier.com/books/artificial-intelligence-in-healthcare/bohr/978-0-12-818438-7. [Last accessed on 17 Apr 2025].
32. Panesar A. Machine learning and AI for healthcare: big data for improved health outcomes. Berkeley, CA: Apress, 2021.
33. Claus CMP, Cavalieiri M, Malcher F, et al. DECOMP Report: answers surgeons expect from an abdominal wall imaging exam. Rev Col Bras Cir. 2022;49:e20223172.
34. Soler L, Mutter D, Marescaux J. Patient-specific anatomy: the new area of anatomy based on 3D modelling. In: Uhl J, Jorge J, Lopes DS, Campos PF, editors. Digital anatomy. Cham: Springer International Publishing; 2021. pp. 285-97.
35. Liu X, Song L, Liu S, Zhang Y. A review of deep-learning-based medical image segmentation methods. Sustainability. 2021;13:1224.
36. Wasserthal J, Breit HC, Meyer MT, et al. TotalSegmentator: robust segmentation of 104 anatomic structures in CT images. Radiol Artif Intell. 2023;5:e230024.
37. Zhang Q, Fu X, He K, et al. A new technique for the 3D reconstruction of the incisional hernia: a pilot study. Clin Imaging. 2020;67:91-4.
38. Yao S, Li JY, Liu FD, Pei LJ. Significance of measurements of herniary area and volume and abdominal cavity volume in the treatment of incisional hernia: application of CT 3D reconstruction in 17 cases. Comput Aided Surg. 2012;17:40-5.
39. Elhage SA, Deerenberg EB, Ayuso SA, et al. Development and validation of image-based deep learning models to predict surgical complexity and complications in abdominal wall reconstruction. JAMA Surg. 2021;156:933-40.
40. Ayuso SA, Elhage SA, Zhang Y, et al. Predicting rare outcomes in abdominal wall reconstruction using image-based deep learning models. Surgery. 2023;173:748-55.
41. Kao AM, Arnold MR, Augenstein VA, Heniford BT. Prevention and treatment strategies for mesh infection in abdominal wall reconstruction. Plast Reconstr Surg. 2018;142:149S-55S.
42. Claus C, Furtado M, Malcher F, Cavazzola LT, Felix E. Ten golden rules for a safe MIS inguinal hernia repair using a new anatomical concept as a guide. Surg Endosc. 2020;34:1458-64.
43. Lin C, Zhu Z, Zhao Y, Zhang Y, He K, Zhao Y. SGT++: improved scene graph-guided transformer for surgical report generation. IEEE Trans Med Imaging. 2024;43:1337-46.
44. Nagaya T, Nakamura YA, Choyke PL, Kobayashi H. Fluorescence-guided surgery. Front Oncol. 2017;7:314.
45. Diana M. Enabling precision digestive surgery with fluorescence imaging. Transl Gastroenterol Hepatol. 2017;2:97.
46. Barberio M, Benedicenti S, Pizzicannella M, et al. Intraoperative guidance using hyperspectral imaging: a review for surgeons. Diagnostics. 2021;11:2066.
48. Aasvang EK, Meyhoff CS. The future of postoperative vital sign monitoring in general wards: improving patient safety through continuous artificial intelligence-enabled alert formation and reduction. Curr Opin Anaesthesiol. 2023;36:683-90.
49. Tanner J, Rochon M, Harris R, et al. Digital wound monitoring with artificial intelligence to prioritise surgical wounds in cardiac surgery patients for priority or standard review: protocol for a randomised feasibility trial (WISDOM). BMJ Open. 2024;14:e086486.
50. Le DTP, Pham TD. Unveiling the role of artificial intelligence for wound assessment and wound healing prediction. Explor Med. 2023;4:589-611.
51. Ganesan O, Morris MX, Guo L, Orgill D. A review of artificial intelligence in wound care. Art Int Surg. 2024;4:364-75.
52. Jamadar DA, Jacobson JA, Girish G, et al. Abdominal wall hernia mesh repair: sonography of mesh and common complications. J Ultrasound Med. 2008;27:907-17.
53. Lacour M, Ridereau Zins C, Casa C, et al. CT findings of complications after abdominal wall repair with prosthetic mesh. Diagn Interv Imaging. 2017;98:517-28.
54. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering. 2023;10:1435.
55. Sajdeya R, Narouze S. Harnessing artificial intelligence for predicting and managing postoperative pain: a narrative literature review. Curr Opin Anaesthesiol. 2024;37:604-15.
56. van de Sande D, van Genderen ME, Verhoef C, et al. Optimizing discharge after major surgery using an artificial intelligence-based decision support tool (DESIRE): an external validation study. Surgery. 2022;172:663-9.
57. Geoghegan L, Scarborough A, Wormald JCR, et al. Automated conversational agents for post-intervention follow-up: a systematic review. BJS Open. 2021;5:zrab070.
58. Park JJ, Tiefenbach J, Demetriades AK. The role of artificial intelligence in surgical simulation. Front Med Technol. 2022;4:1076755.
59. Bencteux V, Saibro G, Shlomovitz E, et al. Automatic task recognition in a flexible endoscopy benchtop trainer with semi-supervised learning. Int J Comput Assist Radiol Surg. 2020;15:1585-95.
60. Eckhoff JA, Rosman G, Altieri MS, et al. SAGES consensus recommendations on surgical video data use, structure, and exploration (for research in artificial intelligence, clinical quality improvement, and surgical education). Surg Endosc. 2023;37:8690-707.
61. Mutter D, Vix M, Dallemagne B, Perretta S, Leroy J, Marescaux J. WeBSurg: an innovative educational Web site in minimally invasive surgery - principles and results. Surg Innov. 2011;18:8-14.
62. Seenivasan L, Islam M, Krishna AK, Ren H. Surgical-VQA: visual question answering in surgical scenes using transformer. arXiv 2022, arXiv:2206.11053. Available from: https://doi.org/10.48550/arXiv.2206.11053. [Last accessed on 17 Apr 2025]
63. Browne R, Gull K, Hurley CM, Sugrue RM, O’Sullivan JB. ChatGPT-4 can help hand surgeons communicate better with patients. J Hand Surg Glob Online. 2024;6:436-8.
64. Ruksakulpiwat S, Kumar A, Ajibade A. Using ChatGPT in medical research: current status and future directions. J Multidiscip Healthc. 2023;16:1513-20.
65. Lai H, Ge L, Sun M, et al. Assessing the risk of bias in randomized clinical trials with large language models. JAMA Netw Open. 2024;7:e2412687.
66. Kirova VD, Ku CS, Laracy JR, Marlowe TJ. Software engineering education must adapt and evolve for an LLM environment. In: Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1, New York, USA. 2024. Association for Computing Machinery; 2024. pp. 666-72.
67. Steyerberg EW, Harrell FE Jr. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol. 2016;69:245-7.
69. Barberio M, Collins T, Bencteux V, et al. Deep learning analysis of in vivo hyperspectral images for automated intraoperative nerve detection. Diagnostics. 2021;11:1508.
70. Wang C. Calibration in deep learning: a survey of the state-of-the-art. arXiv 2023, arXiv:2308.01222. Available from: https://doi.org/10.48550/arXiv.2308.01222. [Last accessed on 17 Apr 2025]
71. Borys K, Schmitt YA, Nauta M, et al. Explainable AI in medical imaging: an overview for clinical practitioners - Saliency-based XAI approaches. Eur J Radiol. 2023;162:110787.