REFERENCES
1. Antaris AL, Chen H, Cheng K, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235-42.
2. Alander JT, Kaartinen I, Laakso A, et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging. 2012;2012:940585.
3. Garoufalia Z, Wexner SD. Ureter identification utilizing indocyanine green (ICG) imaging in colorectal surgery: a systematic review of the literature. Mini-invasive Surg. 2022;6:51.
4. Hammond J, Lim S, Wan Y, Gao X, Patkar A. The burden of gastrointestinal anastomotic leaks: an evaluation of clinical and economic outcomes. J Gastrointest Surg. 2014;18:1176-85.
5. Sciuto A, Merola G, De Palma GD, et al. Predictive factors for anastomotic leakage after laparoscopic colorectal surgery. World J Gastroenterol. 2018;24:2247-60.
6. Bakker IS, Grossmann I, Henneman D, Havenga K, Wiggers T. Risk factors for anastomotic leakage and leak-related mortality after colonic cancer surgery in a nationwide audit. Br J Surg. 2014;101:424-32.
7. Blanco-Colino R, Espin-Basany E. Intraoperative use of ICG fluorescence imaging to reduce the risk of anastomotic leakage in colorectal surgery: a systematic review and meta-analysis. Tech Coloproctol. 2018;22:15-23.
8. Boni L, David G, Mangano A, et al. Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc. 2015;29:2046-55.
9. Jafari MD, Lee KH, Halabi WJ, et al. The use of indocyanine green fluorescence to assess anastomotic perfusion during robotic assisted laparoscopic rectal surgery. Surg Endosc. 2013;27:3003-8.
10. Watanabe M, Murakami M, Ozawa Y, Yoshizawa S, Matsui N, Aoki T. Intraoperative identification of colonic tumor sites using a near-infrared fluorescence endoscopic imaging system and indocyanine green. Dig Surg. 2017;34:495-501.
11. Lee SJ, Sohn DK, Han KS, et al. Preoperative tattooing using indocyanine green in laparoscopic colorectal surgery. Ann Coloproctol. 2018;34:206-11.
12. Ahn HM, Son GM, Lee IY, et al. Optimal ICG dosage of preoperative colonoscopic tattooing for fluorescence-guided laparoscopic colorectal surgery. Surg Endosc. 2022;36:1152-63.
13. Elliott SP, McAninch JW. Ureteral injuries: external and iatrogenic. Urol Clin North Am. 2006;33:55-66.
14. Atallah S, Parra-Davila E, Melani AGF, Romagnolo LG, Larach SW, Marescaux J. Robotic-assisted stereotactic real-time navigation: initial clinical experience and feasibility for rectal cancer surgery. Tech Coloproctol. 2019;23:53-63.
15. White LA, Joseph JP, Yang DY, et al. Intraureteral indocyanine green augments ureteral identification and avoidance during complex robotic-assisted colorectal surgery. Colorectal Dis. 2021;23:718-23.
16. Yu Y, Wang Z, Gao S, Wu Y, Yu A, Wu F. Real-time visualization of skeletal muscle necrosis in mice and swine through NIR-II/I fluorescence imaging. J Biophotonics. 2024;17:e202300225.
17. Wang Z, Yu Y, Wu Y, et al. Dynamically monitoring lymphatic and vascular systems in physiological and pathological conditions of a swine model via a portable NIR-II imaging system with ICG. Int J Med Sci. 2022;19:1864-74.
18. Wu Y, Suo Y, Wang Z, et al. First clinical applications for the NIR-II imaging with ICG in microsurgery. Front Bioeng Biotechnol. 2022;10:1042546.
19. Depalma N, D’Ugo S, Manoochehri F, et al. NIR ICG-enhanced fluorescence: a quantitative evaluation of bowel microperfusion and its relation to central perfusion in colorectal surgery. Cancers. 2023;15:5528.
20. Daniluk P, Mazur N, Swierblewski M, Chand M, Diana M, Polom K. Fluorescence imaging in colorectal surgery: an updated review and future trends. Surg Innov. 2022;29:479-87.
21. Keller DS, Ishizawa T, Cohen R, Chand M. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol. 2017;2:757-66.
22. Soares AS, Clancy NT, Bano S, et al. Interobserver variability in the assessment of fluorescence angiography in the colon. Surg Innov. 2023;30:45-9.
23. Okubo K, Uenosono Y, Arigami T, et al. Quantitative assessment of fluorescence intensity of ICG in sentinel nodes in early gastric cancer. Gastric Cancer. 2018;21:776-81.
24. Barberio M, Benedicenti S, Pizzicannella M, et al. Intraoperative guidance using hyperspectral imaging: a review for surgeons. Diagnostics. 2021;11:2066.
25. Kho E, de Boer LL, Van de Vijver KK, et al. Hyperspectral imaging for resection margin assessment during cancer surgery. Clin Cancer Res. 2019;25:3572-80.
26. Shapey J, Xie Y, Nabavi E, et al. Intraoperative multispectral and hyperspectral label-free imaging: a systematic review of in vivo clinical studies. J Biophotonics. 2019;12:e201800455.
27. Li Q, He X, Wang Y, Liu H, Xu D, Guo F. Review of spectral imaging technology in biomedical engineering: achievements and challenges. J Biomed Opt. 2013;18:100901.
28. Zhang Y, Wu X, He L, et al. Applications of hyperspectral imaging in the detection and diagnosis of solid tumors. Transl Cancer Res. 2020;9:1265-77.
29. Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt. 2005;10:44004.
30. Tetschke F, Markgraf W, Gransow M, et al. Hyperspectral imaging for monitoring oxygen saturation levels during normothermic kidney perfusion. J Sens Sens Syst. 2016;5:313-8.
31. Pandey R, Fournier D, Root G, et al. AI-powered biomolecular-specific and label-free multispectral imaging rapidly detects malignant neoplasm in surgically excised breast tissue specimens. Arch Pathol Lab Med. 2023;147:1298-306.
32. Köhler H, Jansen-Winkeln B, Maktabi M, et al. Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg Endosc. 2019;33:3775-82.
33. Jansen-Winkeln B, Germann I, Köhler H, et al. Comparison of hyperspectral imaging and fluorescence angiography for the determination of the transection margin in colorectal resections - a comparative study. Int J Colorectal Dis. 2021;36:283-91.
34. Pfahl A, Radmacher GK, Köhler H, et al. Combined indocyanine green and quantitative perfusion assessment with hyperspectral imaging during colorectal resections. Biomed Opt Express. 2022;13:3145-60.
35. Jansen-Winkeln B, Barberio M, Chalopin C, et al. Feedforward artificial neural network-based colorectal cancer detection using hyperspectral imaging: a step towards automatic optical biopsy. Cancers. 2021;13:967.
36. Lu G, Little JV, Wang X, et al. Detection of head and neck cancer in surgical specimens using quantitative hyperspectral imaging. Clin Cancer Res. 2017;23:5426-36.
37. Fabelo H, Ortega S, Lazcano R, et al. An intraoperative visualization system using hyperspectral imaging to aid in brain tumor delineation. Sensors. 2018;18:430.
38. Togami S, Kawamura T, Fukuda M, Yanazume S, Kamio M, Kobayashi H. Prospective study of sentinel lymph node mapping for endometrial cancer. Int J Gynaecol Obstet. 2018;143:313-8.
39. Verbeek FP, Tummers QR, Rietbergen DD, et al. Sentinel lymph node biopsy in vulvar cancer using combined radioactive and fluorescence guidance. Int J Gynecol Cancer. 2015;25:1086-93.
40. Yokoyama J, Hasegawa Y, Sugasawa M, et al. Long term-follow-up multicenter feasibility study of ICG fluorescence-navigated sentinel node biopsy in oral cancer. Mol Clin Oncol. 2020;13:41.
41. Lin J, Kligerman S, Goel R, Sajedi P, Suntharalingam M, Chuong MD. State-of-the-art molecular imaging in esophageal cancer management: implications for diagnosis, prognosis, and treatment. J Gastrointest Oncol. 2015;6:3-19.
42. Pratt P, Ives M, Lawton G, et al. Through the HoloLensTM looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp. 2018;2:2.
43. Gholizadeh M, Bakhshali MA, Mazlooman SR, et al. Minimally invasive and invasive liver surgery based on augmented reality training: a review of the literature. J Robot Surg. 2023;17:753-63.
44. Chiou SY, Liu LS, Lee CW, et al. Augmented reality surgical navigation system integrated with deep learning. Bioengineering. 2023;10:617.
45. Reinschluessel AV, Muender T, Salzmann D, Döring T, Malaka R, Weyhe D. Virtual reality for surgical planning - evaluation based on two liver tumor resections. Front Surg. 2022;9:821060.
46. der Linde-van den Bor M, Slond F, Liesdek OCD, Suyker WJ, Weldam SWM. The use of virtual reality in patient education related to medical somatic treatment: a scoping review. Patient Educ Couns. 2022;105:1828-41.
47. Madani A, Namazi B, Altieri MS, et al. Artificial intelligence for intraoperative guidance: using semantic segmentation to identify surgical anatomy during laparoscopic cholecystectomy. Ann Surg. 2022;276:363-9.
48. Mervak BM, Fried JG, Wasnik AP. A review of the clinical applications of artificial intelligence in abdominal imaging. Diagnostics. 2023;13:2889.
49. Berbís MA, Aneiros-Fernández J, Mendoza Olivares FJ, Nava E, Luna A. Role of artificial intelligence in multidisciplinary imaging diagnosis of gastrointestinal diseases. World J Gastroenterol. 2021;27:4395-412.
50. Sutton RT, Zai Ane OR, Goebel R, Baumgart DC. Artificial intelligence enabled automated diagnosis and grading of ulcerative colitis endoscopy images. Sci Rep. 2022;12:2748.
51. Yao L, Li X, Wu Z, et al. Effect of artificial intelligence on novice-performed colonoscopy: a multicenter randomized controlled tandem study. Gastrointest Endosc. 2024;99:91-9.
52. Shakir T, Kader R, Bhan C, Chand M. AI in colonoscopy - detection and characterisation of malignant polyps. Art Int Surg. 2023;3:186-94.
53. Lingam G, Shakir T, Kader R, Chand M. Role of artificial intelligence in colorectal cancer. Artif Intell Gastrointest Endosc. 2024;5:90723.