REFERENCES
1. Guni A, Varma P, Zhang J, Fehervari M, Ashrafian H. Artificial intelligence in surgery: the future is now. Eur Surg Res. 2024;65:22-39.
2. Malhotra K, Wong BNX, Lee S, et al. Role of artificial intelligence in global surgery: a review of opportunities and challenges. Cureus. 2023;15:e43192.
3. Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg. 2018;268:70-6.
4. Reece EM, Davis MJ, Wagner RD, et al. Vascularized bone grafts for spinal fusion-part 1: the iliac crest. Oper Neurosurg. 2021;20:493-6.
5. Reece EM, Agrawal N, Wagner KM, et al. Vascularized bone grafts for spinal fusion-part 2: the rib. Oper Neurosurg. 2021;20:497-501.
6. Bohl MA, Reece EM, Farrokhi F, Davis MJ, Abu-Ghname A, Ropper AE. Vascularized bone grafts for spinal fusion-part 3: the occiput. Oper Neurosurg. 2021;20:502-7.
7. Reece EM, Davis MJ, Abu-Ghname A, et al. Vascularized bone grafts for spinal fusion-part 4: the scapula. Oper Neurosurg. 2021;20:508-12.
8. Bohl MA, Almefty KK, Preul MC, et al. Vascularized spinous process graft rotated on a paraspinous muscle pedicle for lumbar fusion: technique description and early clinical experience. World Neurosurg. 2018;115:186-92.
9. Abdulwadood I, Gomez DA, Martinez C, et al. Vascularized bone grafts in spinal reconstruction: an updated comprehensive review. Orthop Surg. 2024;17:7-14.
10. Skochdopole AJ, Wagner RD, Davis MJ, et al. Vascularized bone grafts in spinal reconstruction: an overview of nomenclature and indications. Semin Plast Surg. 2021;35:50-3.
11. Pennington Z, Mehta VA, Lubelski D, et al. Quality of life and cost implications of pseudarthrosis after anterior cervical discectomy and fusion and its subsequent revision surgery. World Neurosurg. 2020;133:e592-9.
12. McAnany SJ, Baird EO, Overley SC, Kim JS, Qureshi SA, Anderson PA. A meta-analysis of the clinical and fusion results following treatment of symptomatic cervical pseudarthrosis. Global Spine J. 2015;5:148-55.
13. Verla T, Xu DS, Davis MJ, et al. Failure in cervical spinal fusion and current management modalities. Semin Plast Surg. 2021;35:10-3.
14. Buchem MM, Boosman H, Bauer MP, Kant IMJ, Cammel SA, Steyerberg EW. The digital scribe in clinical practice: a scoping review and research agenda. NPJ Digit Med. 2021;4:57.
15. Park D, Cho JM, Yang JW, et al. Classification of expert-level therapeutic decisions for degenerative cervical myelopathy using ensemble machine learning algorithms. Front Surg. 2022;9:1010420.
16. Zhou C, Huang S, Liang T, et al. Machine learning-based clustering in cervical spondylotic myelopathy patients to identify heterogeneous clinical characteristics. Front Surg. 2022;9:935656.
17. Mekhael E, El Rachkidi R, Saliby RM, et al. Functional assessment using 3D movement analysis can better predict health-related quality of life outcomes in patients with adult spinal deformity: a machine learning approach. Front Surg. 2023;10:1166734.
18. Hornung AL, Hornung CM, Mallow GM, et al. Artificial intelligence in spine care: current applications and future utility. Eur Spine J. 2022;31:2057-81.
19. Ames CP, Smith JS, Pellisé F, et al; European Spine Study Group, International Spine Study Group. Artificial intelligence based hierarchical clustering of patient types and intervention categories in adult spinal deformity surgery: towards a new classification scheme that predicts quality and value. Spine. 2019;44:915-26.
20. Shah AA, Devana SK, Lee C, et al. Machine learning-driven identification of novel patient factors for prediction of major complications after posterior cervical spinal fusion. Eur Spine J. 2022;31:1952-9.
21. Hassan AM, Rajesh A, Asaad M, et al. Artificial intelligence and machine learning in prediction of surgical complications: current state, applications, and implications. Am Surg. 2023;89:25-30.
22. Martin BI, Bono CM. Artificial intelligence and spine: rise of the machines. Spine J. 2021;21:1604-5.
23. Katsos K, Johnson SE, Ibrahim S, Bydon M. Current applications of machine learning for spinal cord tumors. Life. 2023;13:520.
24. DiSilvestro KJ, Veeramani A, McDonald CL, et al. Predicting postoperative mortality after metastatic intraspinal neoplasm excision: development of a machine-learning approach. World Neurosurg. 2021;146:e917-24.
25. Benzakour A, Altsitzioglou P, Lemée JM, Ahmad A, Mavrogenis AF, Benzakour T. Artificial intelligence in spine surgery. Int Orthop. 2023;47:457-65.
26. Browd SR, Park C, Donoho DA. Potential applications of artificial intelligence and machine learning in spine surgery across the continuum of care. Int J Spine Surg. 2023;17:S26-33.
27. Wilson B, Gaonkar B, Yoo B, et al. Predicting spinal surgery candidacy from imaging data using machine learning. Neurosurgery. 2021;89:116-21.
28. Broida SE, Schrum ML, Yoon E, et al. Improving surgical triage in spine clinic: predicting likelihood of surgery using machine learning. World Neurosurg. 2022;163:e192-8.
29. Bodenheimer T, Sinsky C. From triple to quadruple aim: care of the patient requires care of the provider. Ann Fam Med. 2014;12:573-6.
30. Zhuo Z, Zhang J, Duan Y, et al. Automated classification of intramedullary spinal cord tumors and inflammatory demyelinating lesions using deep learning. Radiol Artif Intell. 2022;4:e210292.
31. Liu H, Jiao M, Yuan Y, et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI. Insights Imaging. 2022;13:87.
32. Bi WL, Hosny A, Schabath MB, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69:127-57.
33. Wang J, Fang Z, Lang N, Yuan H, Su MY, Baldi P. A multi-resolution approach for spinal metastasis detection using deep Siamese neural networks. Comput Biol Med. 2017;84:137-46.
34. Cui Y, Zhu J, Duan Z, Liao Z, Wang S, Liu W. Artificial intelligence in spinal imaging: current status and future directions. Int J Environ Res Public Health. 2022;19:11708.
35. Singh GD, Singh M. Virtual surgical planning: modeling from the present to the future. J Clin Med. 2021;10:5655.
36. Chen Z, Mo S, Fan X, You Y, Ye G, Zhou N. A meta-analysis and systematic review comparing the effectiveness of traditional and virtual surgical planning for orthognathic surgery: based on randomized clinical trials. J Oral Maxillofac Surg. 2021;79:471.e1-19.
37. Mangano FG, Admakin O, Lerner H, Mangano C. Artificial intelligence and augmented reality for guided implant surgery planning: a proof of concept. J Dent. 2023;133:104485.
38. Marcus AP, Marcus HJ, Camp SJ, Nandi D, Kitchen N, Thorne L. Improved prediction of surgical resectability in patients with glioblastoma using an artificial neural network. Sci Rep. 2020;10:5143.
39. Atai NA, Mehta VA. Initial United States experience with Medtronic Stealth Autoguide cranial robotic guidance platform. J Neurosurg. 2024;141:1520-6.
40. Medtronic. Available from: https://www.medtronic.com/us-en/healthcare-professionals/products/neurological/surgical-navigation-systems/stealthstation.html. [Last accessed on 30 Dec 2024].
41. Allina Health. Navigation systems. Available from: https://www.allinahealth.org/united-hospital/services/john-nasseff-neuroscience-institute/technology/navigation-systems. [Last accessed on 30 Dec 2024].
42. Silva AK, Preminger A, Slezak S, Phillips LG, Johnson DJ. Melting the plastic ceiling: overcoming obstacles to foster leadership in women plastic surgeons. Plast Reconstr Surg. 2016;138:721-9.
43. Sharma JD, Seunarine KK, Tahir MZ, Tisdall MM. Accuracy of robot-assisted versus optical frameless navigated stereoelectroencephalography electrode placement in children. J Neurosurg Pediatr. 2019;23:297-302.
44. Fan X, Mirza SK, Li C, Evans LT, Ji S, Paulsen KD. Accuracy of stereovision-updated versus preoperative CT-based image guidance in multilevel lumbar pedicle screw placement: a cadaveric swine study. JB JS Open Access. 2022;7:e21.00129.
45. Chen H. Application progress of artificial intelligence and augmented reality in orthopaedic arthroscopy surgery. J Orthop Surg Res. 2023;18:775.
46. Xiong J, Hsiang EL, He Z, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl. 2021;10:216.
47. Gao Y, Zhao Y, Xie L, Zheng G. A projector-based augmented reality navigation system for computer-assisted surgery. Sensors. 2021;21:2931.
48. Longo UG, De Salvatore S, Candela V, et al. Augmented reality, virtual reality and artificial intelligence in orthopedic surgery: a systematic review. Appl Sci. 2021;11:3253.
49. Ghaednia H, Fourman MS, Lans A, et al. Augmented and virtual reality in spine surgery, current applications and future potentials. Spine J. 2021;21:1617-25.
50. Kosterhon M, Gutenberg A, Kantelhardt SR, Archavlis E, Giese A. Navigation and image injection for control of bone removal and osteotomy planes in spine surgery. Oper Neurosurg. 2017;13:297-304.
51. Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205-15.
52. Morris MX, Fiocco D, Caneva T, Yiapanis P, Orgill DP. Current and future applications of artificial intelligence in surgery: implications for clinical practice and research. Front Surg. 2024;11:1393898.
53. Morley J, Murphy L, Mishra A, Joshi I, Karpathakis K. Governing data and artificial intelligence for health care: developing an international understanding. JMIR Form Res. 2022;6:e31623.
54. Samant S. What role will AI play in resource-poor health care settings? 2019. Available from: https://www.clinicallab.com/what-role-will-ai-play-in-resource-poor-health-care-settings-407. [Last accessed on 30 Dec 2024].
55. Mithany RH, Aslam S, Abdallah S, et al. Advancements and challenges in the application of artificial intelligence in surgical arena: a literature review. Cureus. 2023;15:e47924.