REFERENCES

1. Roy N, Downes MH, Ibelli T, et al. The psychological impacts of post-mastectomy breast reconstruction: a systematic review. Ann Breast Surg. 2024;8:19-19.

2. Mavioso C, Araújo RJ, Oliveira HP, et al. Automatic detection of perforators for microsurgical reconstruction. Breast. 2020;50:19-24.

3. Lim B, Cevik J, Seth I, et al. Evaluating artificial intelligence's role in teaching the reporting and interpretation of computed tomographic angiography for preoperative planning of the deep inferior epigastric artery perforator flap. JPRAS Open. 2024;40:273-85.

4. O'Neill AC, Yang D, Roy M, Sebastiampillai S, Hofer SOP, Xu W. Development and evaluation of a machine learning prediction model for flap failure in microvascular breast reconstruction. Ann Surg Oncol. 2020;27:3466-75.

5. Chen W, Lu Z, You L, Zhou L, Xu J, Chen K. Artificial intelligence-based multimodal risk assessment model for surgical site infection (AMRAMS): development and validation study. JMIR Med Inform. 2020;8:e18186.

6. Chartier C, Watt A, Lin O, Chandawarkar A, Lee J, Hall-Findlay E. BreastGAN: artificial intelligence-enabled breast augmentation simulation. Aesthet Surg J Open Forum. 2022;4:ojab052.

7. La Padula S, Pensato R, D'Andrea F, et al. Assessment of patient satisfaction using a new augmented reality simulation software for breast augmentation: a prospective study. J Clin Med. 2022;11:3464.

8. Hammond DC, Kim K, Bageris MH, Chaudhry A. Use of three-dimensional imaging to assess the effectiveness of volume as a critical variable in breast implant selection. Plast Reconstr Surg. 2022;149:70-9.

9. Kwong JW, Tijerina JD, Choi S, et al. Assessing the accuracy of a 3-dimensional surface imaging system in breast volume estimation. Ann Plast Surg. 2020;84:S311-7.

10. Amini S, Kersten-Oertel M. Augmented reality mastectomy surgical planning prototype using the HoloLens template for healthcare technology letters. Healthc Technol Lett. 2019;6:261-5.

11. Stern CS, Plotsker EL, Rubenstein R, et al. Three-dimensional surface analysis for preoperative prediction of breast volume: a validation study. Plast Reconstr Surg. 2023;152:1153-62.

12. Vles MD, Terng NCO, Zijlstra K, Mureau MAM, Corten EML. Virtual and augmented reality for preoperative planning in plastic surgical procedures: a systematic review. J Plast Reconstr Aesthet Surg. 2020;73:1951-9.

13. Shafarenko MS, Catapano J, Hofer SOP, Murphy BD. The role of augmented reality in the next phase of surgical education. Plast Reconstr Surg Glob Open. 2022;10:e4656.

14. Sacks JM, Nguyen AT, Broyles JM, Yu P, Valerio IL, Baumann DP. Near-infrared laser-assisted indocyanine green imaging for optimizing the design of the anterolateral thigh flap. Eplasty. 2012;12:e30.

15. Singaravelu A, Dalli J, Potter S, Cahill RA. Artificial intelligence for optimum tissue excision with indocyanine green fluorescence angiography for flap reconstructions: proof of concept. JPRAS Open. 2024;41:389-93.

16. DeFazio MV, Arribas EM, Ahmad FI, et al. Application of three-dimensional printed vascular modeling as a perioperative guide to perforator mapping and pedicle dissection during abdominal flap harvest for breast reconstruction. J Reconstr Microsurg. 2020;36:325-38.

17. Meier EL, Ulrich DJO, Hummelink S. Projected augmented reality in DIEP flap breast reconstruction: projecting perforators on the skin using dynamic infrared thermography. J Plast Reconstr Aesthet Surg. 2024;94:83-90.

18. Pinto-Coelho L. How artificial intelligence is shaping medical imaging technology: a survey of innovations and applications. Bioengineering. 2023;10:1435.

19. De La Hoz EC, Verstockt J, Verspeek S, et al. Automated thermographic detection of blood vessels for DIEP flap reconstructive surgery. Int J Comput Assist Radiol Surg. 2024;19:1733-41.

20. Saxena E.

21. AI-enabled segmentation | materialise mimics. Available from: https://www.materialise.com/en/healthcare/mimics-innovation-suite/ai-enabled-segmentation. [Last accessed on 30 Dec 2024].

22. Seth I, Lindhardt J, Jakobsen A, et al. Improving visualization of intramuscular perforator course: augmented reality headsets for DIEP flap breast reconstruction. Plast Reconstr Surg Glob Open. 2023;11:e5282.

23. Necker FN, Cholok DJ, Fischer MJ, et al. HoloDIEP-faster and more accurate intraoperative DIEA perforator mapping using a novel mixed reality tool. J Reconstr Microsurg. 2024; doi: 10.1055/s-0044-1788548.

24. Ghasroddashti A, Guyn C, Martou G, Edmunds RW. Utility of 3D-printed vascular modeling in microsurgical breast reconstruction: a systematic review. J Plast Reconstr Aesthet Surg. 2024;96:95-104.

25. Ballard DH, Mills P, Duszak R Jr, Weisman JA, Rybicki FJ, Woodard PK. Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Acad Radiol. 2020;27:1103-13.

26. Ravi P, Burch MB, Farahani S, et al. University of Cincinnati 3D Printing Clinical Service Participants. Utility and costs during the initial year of 3D printing in an academic hospital. J Am Coll Radiol. 2023;20:193-204.

27. Cifuentes IJ, Dagnino BL, Salisbury MC, Perez ME, Ortega C, Maldonado D. Augmented reality and dynamic infrared thermography for perforator mapping in the anterolateral thigh. Arch Plast Surg. 2018;45:284-8.

28. Hudson T, Hogue E, Mullner D, Herrera F, Scomacao I. The utility of smartphone-based thermal imaging in the management and monitoring of microvascular flap procedures: a systematic review and meta-analysis. Ann Plast Surg. 2023;90:S420-5.

29. Huang RW, Tsai TY, Hsieh YH, et al. Reliability of postoperative free flap monitoring with a novel prediction model based on supervised machine learning. Plast Reconstr Surg. 2023;152:943e-52e.

30. Hsu SY, Chen LW, Huang RW, et al. Quantization of extraoral free flap monitoring for venous congestion with deep learning integrated iOS applications on smartphones: a diagnostic study. Int J Surg. 2023;109:1584-93.

31. Kim J, Lee SM, Kim DE, et al. Development of an automated free flap monitoring system based on artificial intelligence. JAMA Netw Open. 2024;7:e2424299.

32. Lee C, Chen C, Wang H, Chen L, Perng C. Utilizing mask RCNN for monitoring postoperative free flap: circulatory compromise detection based on visible-light and infrared images. IEEE Access. 2022;10:109510-25.

33. Ramkumar PN, Haeberle HS, Bloomfield MR, et al. Artificial intelligence and arthroplasty at a single institution: real-world applications of machine learning to big data, value-based care, mobile health, and remote patient monitoring. J Arthroplasty. 2019;34:2204-9.

34. Shi YC, Li J, Li SJ, et al. Flap failure prediction in microvascular tissue reconstruction using machine learning algorithms. World J Clin Cases. 2022;10:3729-38.

35. Wang SY, Barrette LX, Ng JJ, et al. Predicting reoperation and readmission for head and neck free flap patients using machine learning. Head Neck. 2024;46:1999-2009.

36. Hassan AM, Biaggi-Ondina A, Asaad M, et al. Artificial intelligence modeling to predict periprosthetic infection and explantation following implant-based reconstruction. Plast Reconstr Surg. 2023;152:929-38.

37. Braun SE, Sinik LM, Meyer AM, Larson KE, Butterworth JA. Predicting complications in breast reconstruction: development and prospective validation of a machine learning model. Ann Plast Surg. 2023;91:282-6.

38. Plastic surgery statistics. American society of plastic surgeons. Available from: https://www.plasticsurgery.org/plastic-surgery-statistics. [Last accessed on 30 Dec 2024].

39. Masoomi H, Hanson SE, Clemens MW, Mericli AF. Autologous breast reconstruction trends in the United States: using the nationwide inpatient sample database. Ann Plast Surg. 2021;87:242-7.

40. Fracol M, Teven CM, Selimos B, et al. Pushing the DIEP envelope with ERAS: 24 hour discharge is safe in appropriately selected patients. Plast Reconstr Surg Glob Open. 2023;11:e5070.

41. Sauro KM, Smith C, Ibadin S, et al. Enhanced recovery after surgery guidelines and hospital length of stay, readmission, complications, and mortality: a meta-analysis of randomized clinical trials. JAMA Netw Open. 2024;7:e2417310.

42. Vecchio D, Stein MJ, Dayan E, Marte J, Theodorou S. Nanotechnology and artificial intelligence: an emerging paradigm for postoperative patient care. Aesthet Surg J. 2023;43:748-57.

43. Pfob A, Mehrara BJ, Nelson JA, Wilkins EG, Pusic AL, Sidey-Gibbons C. Machine learning to predict individual patient-reported outcomes at 2-year follow-up for women undergoing cancer-related mastectomy and breast reconstruction (INSPiRED-001). Breast. 2021;60:111-22.

44. Davis L. Northwell releases AI-driven pregnancy chatbot | Northwell Health. January 11, 2023. Available from: https://www.northwell.edu/news/the-latest/northwell-releases-ai-driven-pregnancy-chatbot. [Last accessed on 30 Dec 2024].

45. Vallurupalli M, Shah ND, Vyas RM. Optimizing readability of patient-facing hand surgery education materials using Chat Generative Pretrained Transformer (ChatGPT) 3.5. J Hand Surg Am. 2024;49:986-91.

46. FDA news release. FDA strengthens safety requirements and updates study results for breast implants. FDA. October 28, 2021. Available from: https://www.fda.gov/news-events/press-announcements/fda-strengthens-safety-requirements-and-updates-study-results-breast-implants. [Last accessed on 30 Dec 2024].

47. Cohen WA, Ballard TN, Hamill JB, et al. Understanding and optimizing the patient experience in breast reconstruction. Ann Plast Surg. 2016;77:237-41.

48. Vargas CR, Koolen PGL, Chuang DJ, Ganor O, Lee BT. Online patient resources for breast reconstruction: an analysis of readability. Plast Reconstr Surg. 2014;134:406-13.

49. Farid Y, Fernando Botero Gutierrez L, Ortiz S, et al. Artificial intelligence in plastic surgery: insights from plastic surgeons, education integration, ChatGPT's survey predictions, and the path forward. Plast Reconstr Surg Glob Open. 2024;12:e5515.

50. Jüni P, Altman DG, Egger M. Systematic reviews in health care: assessing the quality of controlled clinical trials. BMJ. 2001;323:42-6.

51. Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K. Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. 2009;2009:MR000006.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/