REFERENCES

1. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol 2019;28:73-81.

2. Jarvis T, Thornburg D, Rebecca AM, Teven CM. Artificial intelligence in plastic surgery: current applications, future directions, and ethical implications. Plast Reconstr Surg Glob Open 2020;8:e3200.

3. Mantelakis A, Assael Y, Sorooshian P, Khajuria A. Machine learning demonstrates high accuracy for disease diagnosis and prognosis in plastic surgery. Plast Reconstr Surg Glob Open 2021;9:e3638.

4. Lopez C, Tucker S, Salameh T, Tucker C. An unsupervised machine learning method for discovering patient clusters based on genetic signatures. J Biomed Inform 2018;85:30-9.

5. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2017;2:230-43.

6. Ahmadi N, Niazmand M, Ghasemi A, Mohaghegh S, Motamedian SR. Applications of machine learning in facial cosmetic surgeries: a scoping review. Aesthetic Plast Surg 2023;47:1377-93.

7. Lakhani P, Prater AB, Hutson RK, et al. Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 2018;15:350-9.

8. Pesapane F, Codari M, Sardanelli F. Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2018;2:35.

9. Zhou XY, Guo Y, Shen M, Yang GZ. Application of artificial intelligence in surgery. Front Med 2020;14:417-30.

10. Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making. JAMA Surg 2020;155:148-58.

11. Spoer DL, Kiene JM, Dekker PK, et al. A systematic review of artificial intelligence applications in plastic surgery: looking to the future. Plast Reconstr Surg Glob Open 2022;10:e4608.

12. Dorfman R, Chang I, Saadat S, Roostaeian J. Making the subjective objective: machine learning and rhinoplasty. Aesthet Surg J 2020;40:493-8.

13. Eldaly AS, Avila FR, Torres-Guzman RA, et al. Simulation and artificial intelligence in rhinoplasty: a systematic review. Aesthetic Plast Surg 2022;46:2368-77.

14. Kanevsky J, Corban J, Gaster R, Kanevsky A, Lin S, Gilardino M. Big data and machine learning in plastic surgery: a new frontier in surgical innovation. Plast Reconstr Surg 2016;137:890e-7e.

15. Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467-73.

16. Thibaut G, Dabbagh A, Liverneaux P. Does Google’s Bard Chatbot perform better than ChatGPT on the European hand surgery exam? Int Orthop 2024;48:151-8.

17. Arango SD, Flynn JC, Zeitlin J, et al. The performance of ChatGPT on the American society for surgery of the hand self-assessment examination. Cureus 2024;16:e58950.

18. Ghanem D, Nassar JE, El Bachour J, Hanna T. ChatGPT earns American Board Certification in Hand Surgery. Hand Surg Rehabil 2024;43:101688.

19. Crook BS, Park CN, Hurley ET, Richard MJ, Pidgeon TS. Evaluation of online artificial intelligence-generated information on common hand procedures. J Hand Surg Am 2023;48:1122-7.

20. Seth I, Sinkjær Kenney P, Bulloch G, Hunter-Smith DJ, Bo Thomsen J, Rozen WM. Artificial or augmented authorship? A conversation with a chatbot on base of thumb arthritis. Plast Reconstr Surg Glob Open 2023;11:e4999.

21. Leypold T, Schäfer B, Boos A, Beier JP. Can AI think like a plastic surgeon? Evaluating GPT-4’s clinical judgment in reconstructive procedures of the upper extremity. Plast Reconstr Surg Glob Open 2023;11:e5471.

22. Seth I, Xie Y, Rodwell A, et al. Exploring the role of a large language model on carpal tunnel syndrome management: an observation study of ChatGPT. J Hand Surg Am 2023;48:1025-33.

23. Seth I, Lim B, Xie Y, Hunter-Smith DJ, Rozen WM. Exploring the role of artificial intelligence chatbot on the management of scaphoid fractures. J Hand Surg Eur Vol 2023;48:814-8.

24. Ajmera P, Nischal N, Ariyaratne S, et al. Validity of ChatGPT-generated musculoskeletal images. Skeletal Radiol 2024;53:1583-93.

25. Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs. Acta Orthop 2017;88:581-6.

26. Lee KC, Choi IC, Kang CH, et al. Clinical validation of an artificial intelligence model for detecting distal radius, ulnar styloid, and scaphoid fractures on conventional wrist radiographs. Diagnostics 2023;13:1657.

27. Lindsey R, Daluiski A, Chopra S, et al. Deep neural network improves fracture detection by clinicians. Proc Natl Acad Sci U S A 2018;115:11591-6.

28. Cohen M, Puntonet J, Sanchez J, et al. Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs. Eur Radiol 2023;33:3974-83.

29. Hardalaç F, Uysal F, Peker O, et al. Fracture detection in wrist x-ray images using deep learning-based object detection models. Sensors 2022;22:1285.

30. Lysdahlgaard S. Utilizing heat maps as explainable artificial intelligence for detecting abnormalities on wrist and elbow radiographs. Radiography 2023;29:1132-8.

31. Alammar Z, Alzubaidi L, Zhang J, Li Y, Lafta W, Gu Y. Deep transfer learning with enhanced feature fusion for detection of abnormalities in X-ray images. Cancers 2023;15:4007.

32. Jacques T, Cardot N, Ventre J, Demondion X, Cotten A. Commercially-available AI algorithm improves radiologists’ sensitivity for wrist and hand fracture detection on X-ray, compared to a CT-based ground truth. Eur Radiol 2024;34:2885-94.

33. Kim DH, MacKinnon T. Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 2018;73:439-45.

34. Gan K, Xu D, Lin Y, et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop 2019;90:394-400.

35. Thian YL, Li Y, Jagmohan P, Sia D, Chan VEY, Tan RT. Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiol Artif Intell 2019;1:e180001.

36. Oka K, Shiode R, Yoshii Y, Tanaka H, Iwahashi T, Murase T. Artificial intelligence to diagnosis distal radius fracture using biplane plain X-rays. J Orthop Surg Res 2021;16:694.

37. Russe MF, Rebmann P, Tran PH, et al. AI-based X-ray fracture analysis of the distal radius: accuracy between representative classification, detection and segmentation deep learning models for clinical practice. BMJ Open 2024;14:e076954.

38. Zhang J, Li Z, Lin H, et al. Deep learning assisted diagnosis system: improving the diagnostic accuracy of distal radius fractures. Front Med 2023;10:1224489.

39. Anttila TT, Karjalainen TV, Mäkelä TO, et al. Detecting distal radius fractures using a segmentation-based deep learning model. J Digit Imaging 2023;36:679-87.

40. Mert S, Stoerzer P, Brauer J, et al. Diagnostic power of ChatGPT 4 in distal radius fracture detection through wrist radiographs. Arch Orthop Trauma Surg 2024;144:2461-7.

41. Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z. Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg 2022;48:585-92.

42. Hendrix N, Scholten E, Vernhout B, et al. Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs. Radiol Artif Intell 2021;3:e200260.

43. Hendrix N, Hendrix W, van Dijke K, et al. Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist. Eur Radiol 2023;33:1575-88.

44. Tung Y, Su J, Liao Y, et al. High-performance scaphoid fracture recognition via effectiveness assessment of artificial neural networks. Appl Sci 2021;11:8485.

45. Yang TH, Horng MH, Li RS, Sun YN. Scaphoid fracture detection by using convolutional neural network. Diagnostics 2022;12:895.

46. Bulstra AEJ; Machine Learning Consortium. A machine learning algorithm to estimate the probability of a true scaphoid fracture after wrist trauma. J Hand Surg Am 2022;47:709-18.

47. Langerhuizen DWG, Bulstra AEJ, Janssen SJ, et al. Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? Clin Orthop Relat Res 2020;478:2653-9.

48. Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC. Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 2021;4:e216096.

49. Raisuddin AM, Vaattovaara E, Nevalainen M, et al. Critical evaluation of deep neural networks for wrist fracture detection. Sci Rep 2021;11:6006.

50. Janisch M, Apfaltrer G, Hržić F, et al. Pediatric radius torus fractures in x-rays - how computer vision could render lateral projections obsolete. Front Pediatr 2022;10:1005099.

51. Zech JR, Ezuma CO, Patel S, et al. Artificial intelligence improves resident detection of pediatric and young adult upper extremity fractures. Skeletal Radiol 2024.

52. Smith AM, Forder JA, Annapureddy SR, Reddy KSK, Amis AA. The porcine forelimb as a model for human flexor tendon surgery. J Hand Surg Br 2005;30:307-9.

53. Ilie VG, Ilie VI, Dobreanu C, Ghetu N, Luchian S, Pieptu D. Training of microsurgical skills on nonliving models. Microsurgery 2008;28:571-7.

54. Watanabe T, Koyama T, Yamada E, Nimura A, Fujita K, Sugiura Y. The accuracy of a screening system for carpal tunnel syndrome using hand drawing. J Clin Med 2021;10:4437.

55. Orji C, Reghefaoui M, Saavedra Palacios MS, et al. Application of artificial intelligence and machine learning in diagnosing scaphoid fractures: a systematic review. Cureus 2023;15:e47732.

56. Zhang J, Boora N, Melendez S, Rakkunedeth Hareendranathan A, Jaremko J. Diagnostic accuracy of 3D ultrasound and artificial intelligence for detection of pediatric wrist injuries. Children 2021;8:431.

57. Knight J, Zhou Y, Keen C, et al. 2D/3D ultrasound diagnosis of pediatric distal radius fractures by human readers vs artificial intelligence. Sci Rep 2023;13:14535.

58. Caratsch L, Lechtenboehmer C, Caorsi M, et al. Detection and grading of radiographic hand osteoarthritis using an automated machine learning platform. ACR Open Rheumatol 2024;6:388-95.

59. Overgaard BS, Christensen ABH, Terslev L, Savarimuthu TR, Just SA. Artificial intelligence model for segmentation and severity scoring of osteophytes in hand osteoarthritis on ultrasound images. Front Med 2024;11:1297088.

60. Loos NL, Hoogendam L, Souer JS, et al; the Hand-Wrist Study Group. Machine learning can be used to predict function but not pain after surgery for thumb carpometacarpal osteoarthritis. Clin Orthop Relat Res 2022;480:1271-84.

61. Koyama T, Sato S, Toriumi M, et al. A screening method using anomaly detection on a smartphone for patients with carpal tunnel syndrome: diagnostic case-control study. JMIR Mhealth Uhealth 2021;9:e26320.

62. Faeghi F, Ardakani AA, Acharya UR, et al. Accurate automated diagnosis of carpal tunnel syndrome using radiomics features with ultrasound images: a comparison with radiologists’ assessment. Eur J Radiol 2021;136:109518.

63. Shinohara I, Inui A, Mifune Y, et al. Using deep learning for ultrasound images to diagnose carpal tunnel syndrome with high accuracy. Ultrasound Med Biol 2022;48:2052-9.

64. Mohammadi A, Torres-Cuenca T, Mirza-Aghazadeh-Attari M, Faeghi F, Acharya UR, Abbasian Ardakani A. Deep radiomics features of median nerves for automated diagnosis of carpal tunnel syndrome with ultrasound images: a multi-center study. J Ultrasound Med 2023;42:2257-68.

65. Kim SW, Kim S, Shin D, et al. Feasibility of artificial intelligence assisted quantitative muscle ultrasound in carpal tunnel syndrome. BMC Musculoskelet Disord 2023;24:524.

66. Kuroiwa T, Jagtap J, Starlinger J, et al. Deep learning estimation of median nerve volume using ultrasound imaging in a human cadaver model. Ultrasound Med Biol 2022;48:2237-48.

67. Tsamis KI, Kontogiannis P, Gourgiotis I, Ntabos S, Sarmas I, Manis G. Automatic electrodiagnosis of carpal tunnel syndrome using machine learning. Bioengineering 2021;8:181.

68. Bakalis D, Kontogiannis P, Ntais E, Simos YV, Tsamis KI, Manis G. Carpal tunnel syndrome automated diagnosis: a motor vs. sensory nerve conduction-based approach. Bioengineering 2024;11:175.

69. Elseddik M, Mostafa RR, Elashry A, et al. Predicting CTS diagnosis and prognosis based on machine learning techniques. Diagnostics 2023;13:492.

70. Park D, Kim BH, Lee SE, et al. Machine learning-based approach for disease severity classification of carpal tunnel syndrome. Sci Rep 2021;11:17464.

71. Harrison CJ, Geoghegan L, Sidey-Gibbons CJ, Stirling PHC, McEachan JE, Rodrigues JN. Developing machine learning algorithms to support patient-centered, value-based carpal tunnel decompression surgery. Plast Reconstr Surg Glob Open 2022;10:e4279.

72. Hoogendam L, Bakx JAC, Souer JS, Slijper HP, Andrinopoulou ER, Selles RW; Hand Wrist Study Group. Predicting clinically relevant patient-reported symptom improvement after carpal tunnel release: a machine learning approach. Neurosurgery 2022;90:106-13.

73. Loos NL, Hoogendam L, Souer JS, et al; Hand-Wrist Study Group. Algorithm versus expert: machine learning versus surgeon-predicted symptom improvement after carpal tunnel release. Neurosurgery 2024;95:110-7.

74. Orgiu A, Karkazan B, Cannell S, Dechaumet L, Bennani Y, Grégory T. Enhancing wrist arthroscopy: artificial intelligence applications for bone structure recognition using machine learning. Hand Surg Rehabil 2024:101717.

75. Henn D, Trotsyuk AA, Barrera JA, et al. Robotics in plastic surgery: it’s here. Plast Reconstr Surg 2023;152:239-49.

76. Mohapatra DP, Thiruvoth FM, Tripathy S, et al. Leveraging large language models (LLM) for the plastic surgery resident training: do they have a role? Indian J Plast Surg 2023;56:413-20.

77. Jagiella-Lodise O, Suh N, Zelenski NA. Can patients rely on ChatGPT to answer hand pathology-related medical questions? Hand 2024:15589447241247246.

78. Amen TB, Torabian KA, Subramanian T, Yang BW, Liimakka A, Fufa D. Quality of ChatGPT responses to frequently asked questions in carpal tunnel release surgery. Plast Reconstr Surg Glob Open 2024;12:e5822.

79. Croen BJ, Abdullah MS, Berns E, et al. Evaluation of patient education materials from large-language artificial intelligence models on carpal tunnel release. Hand 2024:15589447241247332.

80. Pohl NB, Derector E, Rivlin M, et al. A quality and readability comparison of artificial intelligence and popular health website education materials for common hand surgery procedures. Hand Surg Rehabil 2024;43:101723.

81. Browne R, Gull K, Hurley CM, Sugrue RM, O’Sullivan JB. ChatGPT-4 can help hand surgeons communicate better with patients. J Hand Surg Glob Online 2024;6:436-8.

82. Wernér K, Anttila T, Hulkkonen S, Viljakka T, Haapamäki V, Ryhänen J. Detecting avascular necrosis of the lunate from radiographs using a deep-learning model. J Imaging Inform Med 2024;37:706-14.

83. Lin KY, Li YT, Han JY, et al. Deep learning to detect triangular fibrocartilage complex injury in wrist MRI: retrospective study with internal and external validation. J Pers Med 2022;12:1029.

84. Anttila TT, Aspinen S, Pierides G, Haapamäki V, Laitinen MK, Ryhänen J. Enchondroma detection from hand radiographs with an interactive deep learning segmentation tool - a feasibility study. J Clin Med 2023;12:7129.

85. Kim KB, Song DH, Park HJ. Intelligent automatic segmentation of wrist ganglion cysts using DBSCAN and fuzzy C-means. Diagnostics 2021;11:2329.

86. Buul MM, Bos KE, Dijkstra PF, van Beek EJ, Broekhuizen AH. Carpal instability, the missed diagnosis in patients with clinically suspected scaphoid fracture. Injury 1993;24:257-62.

87.  N, Hendrix W, Maresch B, et al. Hendrix N, Hendrex W, Maresch B, et al. Artificial intelligence for automated detection and measurements of carpal instability signs on conventional radiographs. Eur Radiol 2024.

88. Gu F, Fan J, Cai C, et al. Automatic detection of abnormal hand gestures in patients with radial, ulnar, or median nerve injury using hand pose estimation. Front Neurol 2022;13:1052505.

89. Baxter NB, Ho AZ, Byrd JN, Fernandez AC, Singh K, Chung KC. Predicting persistent opioid use after hand surgery: a machine learning approach. Plast Reconstr Surg 2024;154:573-80.

90. Miller R, Farnebo S, Horwitz MD. Insights and trends review: artificial intelligence in hand surgery. J Hand Surg Eur Vol 2023;48:396-403.

91. Keller M, Guebeli A, Thieringer F, Honigmann P. Artificial intelligence in patient-specific hand surgery: a scoping review of literature. Int J Comput Assist Radiol Surg 2023;18:1393-403.

92. Kraus M, Anteby R, Konen E, Eshed I, Klang E. Artificial intelligence for X-ray scaphoid fracture detection: a systematic review and diagnostic test accuracy meta-analysis. Eur Radiol 2024;34:4341-51.

93. Oeding JF, Kunze KN, Messer CJ, et al. Diagnostic performance of artificial intelligence for detection of scaphoid and distal radius fractures: a systematic review. J Hand Surg Am 2024;49:411-22.

94. Singh G, Anand D, Cho W, Joshi GP, Son KC. Hybrid deep learning approach for automatic detection in musculoskeletal radiographs. Biology 2022;11:665.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/