REFERENCES

1. Fischbein NJ, Wijman CAC. Nontraumatic intracranial hemorrhage. Neuroimaging Clin N Am. 2010;20:469-92.

2. Hemphill JC 3rd, Greenberg SM, Anderson CS, et al; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, Council on Clinical Cardiology. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032-60.

3. Nishijima DK, Offerman SR, Ballard DW, et al; Clinical Research in Emergency Services and Treatment (CREST) Network. Risk of traumatic intracranial hemorrhage in patients with head injury and preinjury warfarin or clopidogrel use. Acad Emerg Med. 2013;20:140-5.

4. Purrucker JC, Haas K, Rizos T, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73:169-77.

5. Sacco S, Marini C, Toni D, Olivieri L, Carolei A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke. 2009;40:394-9.

6. Zahuranec DB, Gonzales NR, Brown DL, et al. Presentation of intracerebral haemorrhage in a community. J Neurol Neurosurg Psychiatry. 2005;77:340-4.

7. Chan T. Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain. Comput Med Imaging Graph. 2007;31:285-98.

8. Soni J, Gangwani P, Sirigineedi S, et al. Deep learning approach for detection of fraudulent credit card transactions. In: Bhardwaj T, Upadhyay H, Sharma TK, Fernandes SL, editors. Artificial intelligence in cyber security: theories and applications. Cham: Springer International Publishing; 2023. pp. 125-38.

9. Soni J, Sirigineedi S, Vutukuru KS, Sirigineedi SSC, Prabakar N, Upadhyay H. Learning-based model for phishing attack detection. In: Bhardwaj T, Upadhyay H, Sharma TK, Fernandes SL, editors. Artificial intelligence in cyber security: theories and applications. Cham: Springer International Publishing; 2023. pp. 113-24.

10. Joshi S, Upadhyay H, Lagos L, Akkipeddi NS, Guerra V. Machine learning approach for malware detection using random forest classifier on process list data structure. Proceedings of the 2nd International Conference on Information System and Data Mining. 2018. pp. 98-102.

11. Soni J, Prabakar N, Upadhyay H. Deep learning approach to detect malicious attacks at system level: poster. Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks. 2019. pp. 314-5.

12. Hussain S, Anwar SM, Majid M. Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing. 2018;282:248-61.

13. Arslan M, Bush IJ, Abiyev RH. Head movement mouse control using convolutional neural network for people with disabilities. 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing - ICAFS-2018. Cham: Springer International Publishing. 2019. pp. 239-48.

14. Zhang G, Chen K, Xu S, et al. Lesion synthesis to improve intracranial hemorrhage detection and classification for CT images. Comput Med Imaging Graph. 2021;90:101929.

15. Sengupta J, Alzbutas R, Falkowski-Gilski P, Falkowska-Gilska B. Intracranial hemorrhage detection in 3D computed tomography images using a bi-directional long short-term memory network-based modified genetic algorithm. Front Neurosci. 2023;17:1200630.

16. Nguyen NT, Tran DQ, Nguyen NT, Nguyen HQ. A CNN-LSTM architecture for detection of intracranial hemorrhage on CT scans. arXiv 2020; arXiv:2005.10992. Available from: https://doi.org/10.48550/arXiv.2005.10992. [accessed 9 Apr 2025]

17. Ngo DT, Nguyen TT, Nguyen HT, Nguyen DB, Nguyen HQ, Pham HH. Slice-level detection of intracranial hemorrhage on CT using deep descriptors of adjacent slices. arXiv 2022; arXiv:2208.03403. Available from: https://doi.org/10.48550/arXiv.2208.03403. [accessed 9 Apr 2025]

18. Helwan A, El-Fakhri G, Sasani H, Uzun Ozsahin D. Deep networks in identifying CT brain hemorrhage. J Intell Fuzzy Syst. 2018;35:2215-28. Available from: https://dl.acm.org/doi/abs/10.3233/JIFS-172261. [accessed 9 Apr 2025]

19. Mahajan R, Mahajan PM. Survey on diagnosis of brain hemorrhage by using artificial neural network. Int J Sci Res Eng Technol. 2016;5:378-81. Available from: https://www.scribd.com/document/322159299/Survey-On-Diagnosis-Of-Brain-Hemorrhage-By-Using-Artificial-Neural-Network. [accessed 9 Apr 2025]

20. Gong T, Liu R, Tan CL, et al. Classification of CT brain images of head trauma. Proceedings of the IAPR International Workshop on Pattern Recognition in Bioinformatics, Melbourne, Australia. Springer; 2007. pp. 401-8.

21. Soni J, Prabakar N, Upadhyay H. Comparative analysis of LSTM sequence-sequence and auto encoder for real-time anomaly detection using system call sequences. Int J Innov Res Comput Commun Eng. 2019;7:4225-30. Available from: https://www.academia.edu/41696249/Comparative_Analysis_of_LSTM_Sequence_Sequence_and_Auto_Encoder_for_real_time_anomaly_detection_using_system_call_sequences. [accessed 9 Apr 2025]

22. Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. arXiv 2014; arXiv:1409.0575. Available from: https://doi.org/10.48550/arXiv.1409.0575. [accessed 9 Apr 2025]

23. Alom MZ, Taha TM, Yakopcic C, et al. The history began from alexnet: a comprehensive survey on deep learning approaches. arXiv 2018; arXiv:1803.01164. Available from: https://doi.org/10.48550/arXiv.1803.01164. [accessed 9 Apr 2025]

24. Wang L, Guo S, Huang W, Qiao Y. Places205-VGGNet models for scene recognition. arXiv 2015; arXiv:1508.01667. Available from: https://arxiv.org/abs/1508.01667. [accessed 9 Apr 2025]

25. Targ S, Almeida D, Lyman K. Resnet in resnet: generalizing residual architectures. arXiv 2016; arXiv:1603.08029. Available from: https://doi.org/10.48550/arXiv.1603.08029. [accessed 9 Apr 2025]

26. Das D, Santosh KC, Pal U. Truncated inception net: COVID-19 outbreak screening using chest X-rays. Phys Eng Sci Med. 2020;43:915-25.

27. Marques G, Agarwal D, de la Torre Díez I. Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network. Appl Soft Comput. 2020;96:106691.

28. Chen HY, Su CY. An enhanced hybrid MobileNet. 2018 9th International Conference on Awareness Science and Technology (iCAST); Fukuoka, Japan. IEEE, 2018. pp. 308-12.

29. Dillon JV, Langmore I, Tran D, et al. Tensorflow distributions. arXiv 2017; arXiv:1711.10604. Available from: https://doi.org/10.48550/arXiv.1711.10604. [accessed 9 Apr 2025]

30. Ketkar N. Introduction to keras. In: Deep learning with Python. Berkeley: Apress. 2017. pp. 97-111.

31. Flanders AE, Prevedello LM, Shih G, et al; RSNA-ASNR 2019 Brain Hemorrhage CT Annotators. Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiol Artif Intell. 2020;2:e190211.

Artificial Intelligence Surgery
ISSN 2771-0408 (Online)
Follow Us

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles will be preserved here permanently:

https://www.portico.org/publishers/oae/